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Abstract—Collaborative spectrum sensing is an effective
method to improve the detection rate in cognitive radio. However,
it is vulnerable to spectrum sensing data falsification attacks.
In order to improve the robustness, numerous attack prevention
schemes have been proposed to identify malicious secondary users
(SUs). Nevertheless, most of them neglect to incentivize SUs to
send truthful reports. Therefore, an incentive method based on
Private-Prior Peer-Prediction with approximate subjective priors
is proposed to identify malicious suspects and punish attackers
when falsifying the sensing data simultaneously. The theoretical
analysis and simulation results demonstrate that honest SUs
are rewarded by accurate and truthful sensing results while
malicious SUs receive heavy loss for making falsified sensing
results. Moreover, a significant improvement of detection rates is
demonstrated when there are a large number of malicious SUs
conducting cooperative attacks compared to the pure majority
rule scheme.

I. INTRODUCTION

Frequency spectrum is becoming increasingly crowded as

a consequence of the rapid development of wireless commu-

nications. However, it is utilized inefficiently because of the

idle time of the licensed users (primary users, PUs). In order

to solve this problem, cognitive radio networks (CRNs) have

been proposed recently, allowing unlicensed users (secondary

users, SUs) to utilize the spectrum without causing interfere

to PUs [1], [2]. The essential step in CRNs is spectrum

sensing, which aims to detect whether the spectrum is oc-

cupied by PUs and thus avoid interruption [3], [4]. However,

single-user spectrum sensing is often unreliable because of

the fading and shadowing in wireless channels. To improve

the accuracy, collaborative spectrum sensing (CSS) has been

proposed, which combines all SUs’ observations to make

the decision; this reduces the uncertainty in the system and

improves reliability. Nevertheless, CSS is especially vulnerable

to Spectrum Sensing Data Falsification (SSDF) attacks. In such

attacks, malicious SUs send falsified local reports to the fusion

center (FC) and mislead the overall decision in order to disturb

the transmission of PUs or occupy the frequency spectrum

exclusively.
To improve the performance of CSS, it is vitally important

to protect the system against SSDF attacks. Many attack-

proof mechanisms have been proposed in [5]–[11]. In [6], an

outlier-detection scheme with partial prior knowledge of the

PU has been proposed to identify malicious SUs whose results

differ greatly from other SUs. In [7], an abnormality detection

method has been proposed, which is able to recognize multiple

malicious SUs without any prior information of attack strate-

gies. In [8], Duan et al. have put forward a mechanism with

direct and indirect penalties to SUs when the FC announces

busy but collision happens to the PU. Considering various

types of honest and malicious SUs, Soltanmohammadi and

Naraghi-Pour in [9] have introduced an iterative expectation

maximization based algorithm to identify malicious SUs.

However, most existing works mainly focus on the study of

the algorithms to identify malicious SUs but ignore incentiviz-

ing SUs in CRNs to announce truthful local reports. Consid-

ering the fact that all SUs participating in CSS are naturally

self-interested and that they have the objective to access the

frequency spectrum possessed by the PU to transmit their own

data, every SU has the potential to become malicious. In order

to maximize its utility in data transmission the SU intends

to send falsified sensing reports, if there is no mechanism to

punish SUs when lying. In addition, mere removal of a large

number of malicious SUs leads to the decline of collaborative

sensing efficiency because fewer SUs get involved in decision

fusion as the number of malicious SUs increases. Furthermore,

some of the previous schemes rely on accurate common prior

knowledge of the activity of the PU, and assume each SU’s

private error rate of sensing is shared by all SUs, which are not

realistic. Moreover, CSS networks are extremely vulnerable to

heavy cooperative attacks by a high percentage of malicious

SUs, but only a few previous works consider this extreme

condition in their studies.

Therefore, in this paper, we propose a mechanism based on

Private-Prior Peer-Prediction mechanism with both incentive

scheme and attacker identification scheme to motivate SUs

to send honest sensing reports, and distinguish malicious

SUs from honest ones simultaneously. The scheme merely

requires the SU’s approximate subjective estimation of the

prior knowledge of the PU’s activity. In [12], Miller et al.
have initially introduced the method of Peer-Prediction to

create incentives for online raters to make honest reviews

by appropriate rewards. Witkowski and Parkes have improved

the method and proposed the Private-Prior Peer-Prediction
mechanism in [13] and [14]. This scheme is adequate for the

circumstances where prior knowledge is subjective and private

to each agent. The Peer-Prediction method has been utilized to

collect truthful reports on website reviews, pollution detection

[15] and private surveys [16], which is regarded as an effective

way to elicit truthful feedback.
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The rest of this paper is organized as follows. The system

model is described in detail in Section II. Then, a Private-Prior

Peer-Prediction method to incentivize SUs’ truthful reporting

and identify malicious suspects is applied in collaborative

spectrum sensing in Section III. Simulation results are demon-

strated in Section IV, and conclusions are drawn in Section V.

II. SYSTEM MODEL

In our paper, we consider a CRN with one PU who has

the license to transmit data in one channel and N SUs who

conduct collaborative spectrum sensing independently, each

making hard decisions, denoted by Di ∈ {0, 1}, on whether

the channel is idle or busy by utilizing energy detection, and

generating a binary sensing report, denoted by Si ∈ {0, 1}.

The two different states of the channel are denoted by H0 and

H1, which represent the channel is idle or busy, respectively.

Among N SUs, there are M malicious SUs and they cannot

be predominant in a normal CSS network, thus M < 1
2N . All

honest SUs report what they detect locally and are uninterested

in the final fusion results, while malicious SUs report accord-

ing to their attack strategies and desire to dominate the FC’s

final decision. In this paper, we primarily focus on protection

against cooperative attacks, which means that all malicious

SUs are able to contact each other and will conduct attacks

together.

A total number of T time slots are considered in the

process and in each time slot, every SU senses the channel

and reports its detection to the FC only once. Each SU i
has its own false alarm probability of sensing Pfa,i, missed

detection probability of sensing Pmd,i, false alarm probability

of reporting Pf,i, missed detection probability of reporting

Pm,i, and subjective prior belief in regard to the state of the

channel Pi(H1) which are implicit to the FC and other SUs.

They remain constant in T time slots for simplicity. The SUs

are assumed to be able to make an approximate estimation of

P (H1) based on the regularity of the PUs activity.

The FC fuses the decisions according to the fusion rule. In

this paper, the final decision result will be based on majority

rule, which generates a final result according to the decisions

of most SUs in the decision pool. In addition, the FC will

calculate a score (either rewards if it is positive, or penalties

if it is negative) for each SU according to its reports in each

time slot.

III. PEER-PREDICTION METHOD

In this section, we firstly introduce Private-Prior Peer-

Prediction method for collecting truthful reports of SUs. With

the utilization of a strictly proper scoring rule, we then explain

the mechanism to motivate SUs to report honestly and identify

malicious suspects by distinguishing scores that different types

of SUs obtain. Lastly, we propose the uncertainty index and a

method to enlarge the loss on scores of malicious SUs when

conducting attacks based on the threshold to the uncertainty

index.

A. Private-Prior Peer-Prediction

The Private-Prior Peer-Prediction method is an incentive

compatible mechanism originally proposed to motivate agents

to report actual feedback on online reviewing websites. In

Private-Prior Peer-Prediction, each agent i is coupled with

another agent j = i+1 and is required to send an information

report before sensing the world state and a prediction report

after sensing the world state. The center will comprehend the

implicit decision of each agent by comparing information and

prediction reports and calculating the score of each agent by

an appropriate scoring rule [13].

In our system, considering the existence of cooperative

attacks, each SU i has a peer SU j selected randomly from

other SUs without repetition in each time slot. Before sensing

the PU’s signal in the channel, the SU i is required to provide

its information report of the probability that the peer SU j
will report the channel being busy (Sj = 1), denoted by

Xi,j ∈ [0, 1], to the FC. Xi,j can be expressed as:

Xi,j =Pi(Sj = 1)

=Pi(Sj = 1|H0) · Pi(H0)

+ Pi(Sj = 1|H1) · Pi(H1)

=P i
f,j · Pi(H0) + (1− P i

m,j) · Pi(H1)

(1)

where Pi(H0) and Pi(H1) are SU i’s subjective prior of

the PU’s activity, and P i
f,j and P i

m,j are SU j’s error rates

of reporting in SU i’s perspective. Assuming that P i
att,md,j

and P i
att,fa,j are SU j’s missed detection attack rate and

false alarm attack rate observed by SU i, P i
f,j and P i

m,j can

be calculated from its respective subjective prior information

according to

P i
f,j = (1− P i

fa,j) · P i
att,fa,j + P i

fa,j · (1− P i
att,md,j)

P i
m,j = (1− P i

md,j) · P i
att,md,j + P i

md,j · (1− P i
att,fa,j).

(2)

After observing the PU’s signal in the channel, the SU i
makes its own decision Di = di and sends its prediction report

of the probability that peer SU j will report the channel being

busy (Sj = 1|Di = di), denoted by Yi,j ∈ [0, 1], to the FC.

Yi,j can be expressed as,

Yi,j =Pi(Sj = 1|Di = di)

=Pi(Sj = 1|H0) · Pi(H0|Di = di)

+ Pi(Sj = 1|H1) · Pi(H1|Di = di).

(3)

For convenience, the prediction report is abbreviated as Y 0
i,j

when SU i observes the channel is idle and is abbreviated as

Y 1
i,j when SU i observes the channel is busy, namely

Y 0
i,j =Pi(Sj = 1|Di = 0)

=
P i
f,j · (1− Pfa,i) · Pi(H0) + (1− P i

m,j) · Pmd,i · Pi(H1)

Pmd,i · Pi(H1) + (1− Pfa,i)Pi(H0)
(4)

Y 1
i,j =Pi(Sj = 1|Di = 1)

=
P i
f,j · Pfa,i · Pi(H0) + (1− P i

m,j) · (1− Pmd,i) · Pi(H1)

Pfa,i · Pi(H0) + (1− Pmd,i)Pi(H1)
.

(5)



The prediction report made by a well-functioning honest SU

with low Pfa and Pmd will not be identical to the information

report because more information about the channel has been

revealed after i senses the PU’s signal, as will be seen in the

sequel. Therefore, the FC is able to estimate SU i’s sensing

report by comparing Xi,j and Yi,j .

Proposition 1: If all SUs satisfy Pf + Pm < 1 and Pfa +
Pmd < 1, for any SU i and j, it holds that

Pi(Sj = 1|Di = 1) > Pi(Sj = 1) > Pi(Sj = 1|Di = 0).
(6)

Proof: For every SU i and j, P i
f,j + P i

m,j < 1 always

holds because no SU will estimate P i
f,j + P i

m,j ≥ 1 knowing

that all SUs’ error rates of reporting satisfy Pf + Pm < 1.

Pi(Sj = 1|Di = 1)− Pi(Sj = 1)

=(1− P i
m,j) ·

(1− Pmd,i) · Pi(H1)

P (Di = 1)
+ P i

f,j ·
Pfa,i · Pi(H0)

P (Di = 1)

− P i
f,j · Pi(H0)− (1− P i

m,j)Pi(H1)

=
1

P (Di = 1)

{
− [

P i
f,j · Pi(H0) + (1− P i

m,j)Pi(H1)
]

· [Pfa,i · Pi(H0) + (1− Pmd,i)Pi(H1)
]

+ (1− P i
m,j)(1− Pmd,i)Pi(H1) + P i

f,j · Pfa,i · Pi(H0)
}

=
Pi(H0)Pi(H1)

P (Di = 1)

[
1− P i

f,j − P i
m,j − Pfa,i − Pmd,i

+ (P i
f,j + P i

m,j)(Pfa,i + Pmd,i)
]

=
Pi(H0)Pi(H1)

P (Di = 1)
(1− P i

f,j − P i
m,j)(1− Pfa,i − Pmd,i)

>0.

Thus, Pi(Sj = 1|Di = 1) > Pi(Sj = 1). And Pi(Sj = 1) >
Pi(Sj = 1|Di = 0) can be proved analogously by symmetry.

In our mechanism, to satisfy the condition of Proposition

1, the FC will restrict the SUs whose Pf + Pm ≥ 1 and

Pfa + Pmd ≥ 1 to participate in the CSS process. This is

reasonable because such SUs are either malicious SUs with

high attacking rates or honest SUs with low performance and

their decisions will corrupt the final CSS results severely.

According to Proposition 1, it is implied in the prediction

report that SU i has observed H0 if Yi,j < Xi,j , or H1 if

Yi,j > Xi,j . Thus the implied sensing report each SU makes

in one time slot can be speculated by the FC according to the

following rule,

Si =

{
1 Yi,j > Xi,j

0 Yi,j < Xi,j .
(7)

Note the fact that the accuracy of P i
f,j and P i

m,j are unnec-

essary for Proposition 1 to hold. It can be concluded that the

imprecise estimation will have no influence on the accuracy

of the judgement on SU i’s decision using Eq. (7).

For each honest SU, Si = Di, while for the malicious

SU, Si = σi(Di), where σi : {0, 1} → {0, 1} is a binary

function according to its attack strategy. In order to conduct

SSDF attacks, the malicious SU may not report Xi,j and

Yi,j honestly. Therefore, a mechanism should be designed to

incentivize each SU to report truthful and accurate values of

Xi,j and Yi,j approaching as close as possible to the actual

probabilities P (Sj = 1) and P (Sj = 1|Di = di) by giving

SUs different scores according to their reports. The score of

each SU in each time slot is defined by the scoring function,
Ui = α ·R(Xi,j , Sj)︸ ︷︷ ︸

Information Score

+β ·R(Yi,j , Sj)︸ ︷︷ ︸
Prediction Score

+γ (8)

where the R(x, q) is a strictly proper scoring rule and will

be introduced in the following subsection. α > 0, β > 0 and

γ are parameters chosen by different application conditions.

Such scores are accumulative as sensing process continues.

A negative score can be a reflection of either monetary

punishment or frequency spectrum access limitation and such

penalties will be returned to the SUs with positive scores as

rewards on their honesty and accuracy.
To maintain the average score in the whole system equal to

zero, γ = − 1
N

∑N
i=1

[
α·R(Xi,j , Sj)+β·R(Yi,j , Sj)

]
. Assume

that M malicious SUs can get a total reward R1 by occupying

the channel and transmitting data when the PU is absent but

the FC announces the channel is busy, and get a total reward

R2 by interfering the PU when the PU is present but the

FC announces the channel is idle. Suppose the system has a

missed detection rate Qm and a false alarm rate Qf and each

malicious user has an average information score R̄m(X,S)
and an average prediction score R̄m(Y, S). A minimum of

positive coefficients α and β can be derived from the inequality

α · R̄m(X,S)+β · R̄m(Y, S)+ γ+ R1

M Qf ·P (H0)+
R2

M Qm ·
P (H1) < 0. To balance the weights of the information score

and the prediction score, we set α = β in our mechanism.
On the one hand, with the appropriate scoring function, a

rational malicious SU aware that it cannot gain a positive

income in each time slot when conducting attacks tends to

announce honest reports when the loss exceeds its tolerance.

On the other hand, it is reasonable for the FC to suspect that

SUs with relatively low accumulative scores are malicious.

Thus, the FC sets an integer K and removes the decisions

made by K SUs with lowest accumulative scores from the

decision pool. The optimized value of K depends on M and

N , and equals M if all malicious SUs obtain lower scores

than honest ones. Furthermore, unlike other reputation based

schemes proposed previously, the scoring function proposed

in this paper is independent of the FC’s final decision. The

reputation systems in [10] and [11] rely on the FC’s decision

and can easily break down if the FC itself makes incorrect

decisions due to being misled by malicious SUs; this of course,

forms positive feedback and affects subsequent decision result-

s. However, in our proposed scheme, the score of each SU will

not be affected by incorrect final decision and is more likely

to be assessed with an honest peer’s sensing report as long

as M < 1
2N and Pf + Pm < 1 as assumed. Therefore, the

scoring system is more stable and robust.

B. Scoring Rules
For a binary report q ∈ {0, 1}, a proper scoring rule R(x, q)

incentivizes the agents’ accurate probabilistic predictions by



assigning different scores according to their reports x. And a

strictly proper scoring rule maximizes the expectation of the

scores if and only if the prediction reports equal the actual

probabilities [17]. Furthermore, the binary quadratic scoring

rule, according to Selten [18], is an incentive compatible

strictly proper scoring rule. It is given by

R(x, 0) = 1− x2

R(x, 1) = 2x− x2
(9)

for x ∈ [0, 1]. Assuming p is probability of q = 1, the expecta-

tion of the score is E[R(x, ·)] = (1−p)(1−x2)+p(2x−x2).
By taking the derivative with respect to x, setting it to zero,

and checking the second-order condition,
∂E[x]
∂x = 2p− 2x =

0 ⇔ x = p, ∂2E[x]
∂x2 = −2 < 0. We can get a maximum when

x = p [13].

In addition, if R(x, ·) is a strictly proper scoring rule and

α > 0, R∗(x, ·) = α ·R(x, q) + β is also strictly proper [12].

In our scoring function Ui(Xi,j , Yi,j), due to the temporal

separation of the information report and the prediction report,

Xi,j and Yi,j are independent, thus E[Ui(Xi,j , Yi,j)] = α ·
E[R(Xi,j , ·)] + β · E[R(Yi,j , ·)|Di = di] + γ. Therefore,

E[Ui(Xi,j , Yi,j)] reaches the maximum when both the in-

formation report and the prediction report maximize, which

requires Xi,j = P (Sj = 1) and Yi,j = P (Sj = 1|Di = di)
exactly. In a long term, an honest SU always expects higher

scores for its accurate information and prediction reports,

while the malicious user will have a certain loss in score each

time when it announces falsified report data.

Algorithm 1 A Private-Prior Peer-Prediction Method for CSS

1: Given the time slot index t = 0, the FC initializes the

parameters α and β, the threshold θ and the number of

malicious suspects K;

2: for each time slot t do
3: Remove the SUs with Pf+Pm ≥ 1 and Pfa+Pmd ≥ 1;

4: for each SU i do
5: Choose an SU j �= i randomly which isn’t the peer

of any previous SU;

6: Ask SU i for its information report Xi,j ;

7: end for
8: All SUs sense the signal of PU in the channel;

9: for each SU i do
10: Ask SU i for its prediction report Yi,j ;

11: Get the implied decision using Eq. (7);

12: Calculate uncertainty index φi,j utilizing Eq. (10);

13: if φi,j ≥ θ then
14: Remove SU i’s decision from the decision pool;

15: end if
16: end for
17: Calculate each SU’s score using Eq. (8) and (9);

18: Remove the decision of K SUs with lowest accumula-

tive scores from the decision pool;

19: Make the final decision of CSS by fusion rule in the

decision pool;

20: end for

C. Uncertainty Index and Threshold

While attacking, the malicious SU can minimize its loss on

scores by making the prediction report as close as possible to

the information report, i.e., reporting Y 0
i,j = Xi,j−ε when H1

or Y 1
i,j = Xi,j + ε when H0, where ε is a smallest possible

positive number. Thus, it is necessary to set a threshold to limit

the minimum difference between Xi,j and Yi,j . By taking the

derivative of Y 0(Pmd, Pfa) and Y 1(Pmd, Pfa) with respect

to Pmd and Pfa, ∂Y 0

∂Pmd
< 0, ∂Y 0

∂Pfa
< 0, ∂Y 1

∂Pmd
> 0 and

∂Y 1

∂Pfa
> 0. Thus, Y 0(Pmd, Pfa) is a decreasing function while

Y 1(Pmd, Pfa) is increasing with respect to both independent

variables. In other words, assuming that Pf , Pm and P (H1)
are fixed, the honest SU with lower missed detection rate and

false alarm rate will make a higher prediction report Y 1 or

a lower prediction report Y 0, compared to the honest SU

with relatively higher error rates or the malicious SU who

makes prediction reports conservatively in order to minimize

its loss. Therefore, an individual uncertainty index φi,j can be

defined as the uncertainty of SU i when it makes a prediction

report Yi,j , which can be expressed by i’s error rates of

sensing derived inversely from prediction report Yi,j , denoted

by P̃ j
md,i and P̃ j

fa,i, respectively. Furthermore, by comparing
∂Y 0

∂Pmd
, ∂Y 0

∂Pfa
, ∂Y 1

∂Pmd
and ∂Y 1

∂Pfa
, it can be concluded that Y 0 is

more sensitive to Pmd than to Pfa, and Y 1 is more sensitive

to Pfa than to Pmd when Pfa < 0.5 and Pmd < 0.5, which

are always true in the real case. Thus, the SU with low P̃ j
md,i

is more confident and reliable than the one with high P̃ j
md,i

when observing H0 and so is the SU with low P̃ j
fa,i when

observing H1. Therefore, the individual uncertainty index φi,j

can be expressed as the maximum of P̃ j
md,i on condition

that P̃ j
fa,i = 0 when reporting Y 0

i or maximum of P̃ j
fa,i on

condition that P̃ j
md,i = 0 when reporting Y 1

i . The expression

of φi,j is then,

φi,j =

⎧⎪⎨
⎪⎩

(Pf,j−Yi,j)P (H0)[
Yi,j−(1−Pm,j)

]
P (H1)

if Xi,j > Yi,j[
Yi,j−(1−Pm,j)

]
P (H1)

(Pf,j−Yi,j)P (H0)
if Xi,j < Yi,j .

(10)

Eq. (10) above can be derived from Eq. (4) and (5) by

setting Pfa,i = 0 and Pmd,i = 0, respectively. To compute

the uncertainty index, the FC observes each SUs report error

rate Pf,j and Pm,j and prior belief P (H1) with the activity

history of the PU and all SUs. Typically, the SU with a

high uncertainty index is either a badly-functioning one who

cannot be certain whether another honest SU will make the

same prediction, or a malicious one sending a conservative

falsified prediction report close in value to its information

report. Therefore, the FC sets a threshold θ for the uncertainty

index so that the decision made by the SU whose φi,j ≥ θ
will be removed from the decision pool and will not be

considered by the FC when it aggregates SUs’ decisions and

decides the final result. θ is unknown to all SUs and will be

designed according to typical error rates of normal SUs so that

most of well-functioning honest SUs’ uncertainty indices are

below the threshold. Furthermore, for the minority of honest



SUs whose uncertainty index exceeds the threshold, their best

choice is still to report honestly and it is unnecessary for

them to adjust their prediction reports because the income only

comes from the score, decided by the accuracy of Xi,j and

Yi,j , rather than acceptance of their decisions by the FC. On

the contrary, the income of the malicious SUs comes from

both their scores and the FC’s final decision. In order to

falsify the sensing results, malicious SUs have to decrease

their uncertainty indices below the threshold by enlarging the

difference between their information reports and prediction

reports to be similar to a typical honest user, so that their

misleading decisions will be taken into account by the FC.

Consequently, they have to afford more loss for conducting

attacks because the lower uncertainty index leads to further

distance between falsified Yi,j and actual P (Sj = 1|Di = di),
resulting in a lower expectation of the prediction score.

In Algorithm 1, we provide procedures of the proposed

private-prior peer-prediction algorithm in detail. In the follow-

ing section, we will examine the effectiveness of the algorithm

by simulations.

IV. SIMULATION RESULTS

In this section, we conduct several simulations to demon-

strate the effectiveness of Algorithm 1 for collaborative spec-

trum sensing in cognitive radio. Assume that due to the varying

distances of different SUs, each SU i has its error rates of

sensing Pmd,i ∈ [0.05, 0.1] and Pfa,i ∈ [0.05, 0.1]. Besides,

each SU has the subjective prior knowledge of the activity

of the PU with an error up to ±10% compared to the actual

value. Trained by several groups of typical sensing data, the

threshold of the uncertainty index θ is set as 0.1. We consider a

large number of malicious SUs conducting cooperative SSDF

attacks who are able to afford any great loss from the scheme.

All malicious SUs attack simultaneously while each controls

its error rates of reporting Pf < 0.5, Pm < 0.5 and the

uncertainty index φi,j < θ to avoid its decision being removed

by the FC from the decision pool. Parameters α and β are

set as 1. A majority fusion rule is adopted in our proposed

scheme and we will compare our proposed scheme with the

pure majority rule scheme.

A. Effectiveness of incentive mechanism

In the simulation, we set the number of SUs N as 10 and the

total number of time slots T as 100. The number of attackers

M is set to be 3 and P (H1) = 0.5. In Fig. 1 we demonstrate

the varying scores between honest SUs and malicious SUs

according to time. After t = 50, one of the honest SUs

becomes malicious, and after t = 80, the initial three malicious

SUs stop conducting attacks. The following results can be

inferred from the observations. (i). There is merely minor

variation of the scores of different SUs among the same type

due to the different sensing error rates and the peers matched

to them in each time slot. (ii). After 10 time slots, all honest

SUs gain accumulative scores higher than malicious SUs, and

the scores of malicious SUs decrease rapidly while those of

honest SUs increase, so that the scores in the whole CSS

Fig. 1. Score variation under different types of SU behaviors.
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PU’s activities.

system sum up to zero. (iii). The proposed incentive scheme

is sensitive and impartial because once an honest SU turns

malicious, its score reduces rapidly as fast as other malicious

SUs. Besides, as long as a malicious SU stops sending falsified

reports, the accumulative score merely fluctuate slightly and

the total penalty remains approximately constant. Moreover,

it is noteworthy that after t = 80, the scores of both the

initial malicious SUs and honest SUs increase slightly. That is

because the score of the SU who turns malicious halfway still

decreases but the total income of the system has to remain

zero.

B. Stability of the Scores

In the simulation, we set the number of SUs N as 20 and

the total number of time slots T as 200. We examine the

stability of the scoring function when M and P (H1) vary.

It can be observed from Fig. 2 that honest SUs always have

higher average accumulative scores than malicious SUs do,

despite variation in the values of P (H1) and the number of

malicious SUs. When M declines, the malicious SU is more

likely to be matched with an honest peer and thus will have to
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Fig. 3. Comparison of the detection rates for the proposed scheme and the
majority rule under heavy cooperative attacks.

afford greater loss than the situation where it is matched with

another cooperating attacker. The difference in scores between

honest SUs and malicious SUs decreases when P (H1) is

extremely high or low mainly because malicious SUs have

fewer opportunities to attack while maintaining Pf < 0.5
and Pm < 0.5, and honest SUs have lower expectations

on prediction scores under those circumstances. However, an

adaptive design of α and β can be introduced to the proposed

scheme according to P (H1) observed by the FC in order to

maintain the loss in scores resulting from malicious activities

constant when P (H1) varies.

C. Performance Evaluation

In this section, we set the number of SUs N as 200, the

total number of time slots T as 200. The number of attackers

M varies from 86 to 100 and P (H1) varies from 0.25 to 0.75.

In this section, we do not consider the maximum loss that a

malicious can afford. We demonstrate a better performance

of our peer-prediction based mechanism than that of the pure

majority rule. In Fig. 3, the majority rule removes the outliers

accurately in hard decision and has excellent performance

when the proportion of malicious users is relatively low. How-

ever, the accuracy decreases sharply when M
N > 0.45 because

of heavy cooperative attacks conducted by malicious SUs. Our

proposed scheme performs even better than the majority rule

when the proportion of malicious SUs increases regardless of

the variation of P (H1). By removing the decisions of suspect

attackers with low accumulative scores, the FC guarantees

more reliable decisions in the decision pool. Therefore, the

error rate of the proposed scheme reduces to one fifth of

that of the majority rule scheme generally. If considering

the rationality of malicious SUs and their tolerance of loss,

they have to reduce their attacking rate or even are reluctant

to attack, for they cannot expect a positive income when

attacking.

V. CONCLUSION

In this paper, we proposed an incentive attack prevention

method with approximate subjective priors for collaborative

spectrum sensing in CRNs to motivate SUs to report truth-

ful sensing results and identify malicious suspects based on

Private-Prior Peer-Prediction. Each SU’s local sensing de-

cision was judged by comparing the relationship between

the information report and the prediction report. Besides,

the score of each SU was calculated by utilizing the binary

quadratic scoring rule. In order to increase the loss incurred by

malicious SUs, we introduced the threshold of the uncertainty

index to constrain the value of the prediction reports. From

the simulation results, we can observe distinct difference in

scores between honest SUs and malicious SUs, and significant

increase of detection rates compared with pure majority rule

under heavy cooperative SSDF attacks.
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