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Abstract— Collaborative spectrum sensing is an effective
method to improve detection rates in cognitive radio
networks. However, it is vulnerable to spectrum sensing
data falsification (SSDF) attacks when malicious secondary
users (SUs) report fraudulent sensing data. In order to improve
the robustness, numerous attack prevention schemes have
been proposed to identify malicious SUs. Nevertheless, most
of them neglect to incentivize SUs to send truthful reports.
An incentive method based on peer-prediction is proposed to
identify malicious suspects, punish attackers, and incentivize
SUs to send truthful reports simultaneously for decision fusion.
Moreover, continuous peer-prediction derived from the binary
case is introduced, which is capable of preventing attacks in the
continuous domain. Theoretical analysis and simulation results
demonstrate that honest SUs are rewarded for accurate and
truthful sensing results, while malicious SUs incur penalty for
making falsified sensing reports. A significant improvement of
detection rates is obtained by the proposed scheme when there
are no more than half of malicious SUs conducting SSDF attacks.

Index Terms— Collaborative spectrum sensing, data fusion,
decision fusion, peer-prediction, spectrum sensing data
falsification attacks.

I. INTRODUCTION

REQUENCY spectrum is becoming increasingly crowded

as the consequence of the rapid development of wireless
communications and growing number of wireless devices.
However, it is utilized inefficiently because of the idle time
of the licensed users (primary users, PUs) [1], [2]. In order
to solve this problem, cognitive radio networks (CRNs)
were proposed, allowing unlicensed users (secondary users,
SUs) to utilize the spectrum without causing interference
to the PUs [3]-[6]. An essential step in CRNs is spectrum
sensing, which aims to detect the spectrum holes that are
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not occupied by the PUs and thus avoid causing interference.
Many spectrum sensing methods have been proposed to
identify the existence of the PU’s signal, including energy
detection, matched filtering, waveform based sensing, spectral
correlation, etc. [7]. Energy detection is the most common
approach among all because it is easy to implement and does
not require prior information of the signal [8], [9]. However,
single-user energy detection is often inaccurate because of the
fading and shadowing effects in wireless channels [10]-[13].
To improve the accuracy, collaborative spectrum sensing (CSS)
has been proposed, in which a fusion center (FC) combines
all SUs’ observations to make the final decision. At present,
there are two types of fusion protocols in CSS, namely
decision fusion and data fusion. In decision fusion, each SU
sends a 1-bit decision to the FC based on its own observation
whether the PU is busy or not. In data fusion, the SU directly
sends the raw observation data to the FC. Both methods
significantly improve the reliability of the spectrum sensing,
but data fusion performs superior to decision fusion [14].
Nevertheless, the CSS is vulnerable to spectrum sensing data
falsification (SSDF) attacks. In such attacks, malicious SUs
deliberately send falsified local reports to the FC and corrupt
the overall decision in order to either disturb the data transmis-
sion of the PUs or occupy the frequency spectrum exclusively.
To improve the performance of CSS, it is vitally important
to protect the system against SSDF attacks. Many attack-
resistant mechanisms have been proposed in [15]-[22]. Most
existing works focus on the study of algorithms to identify
malicious SUs while ignoring incentivizing SUs in CRNs to
announce truthful local reports. Considering the fact that all
SUs participating in CSS are ostensibly self-interested and
that they have the objective to access the frequency spectrum
possessed by the PU to transmit their own data, every SU
has the potential to become malicious. In order to maximize
its utility in data transmission, an SU may intend to send
falsified sensing reports, if there is no mechanism to punish
dishonest SUs. In addition, mere removal of a large number
of malicious SUs leads to the decline of collaborative sensing
efficiency because fewer SUs get involved in the decision
fusion process as the number of malicious SUs increases.
Furthermore, some of the previous schemes rely on common
prior knowledge of the activity of the PU, and assume each
SU’s private error rate of sensing is the same and shared by
all SUs, which is not realistic. Moreover, CSS networks are
extremely vulnerable to heavy cooperative attacks by a high
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percentage of malicious SUs, but only a few previous works
consider this extreme condition in their studies. Last but not
least, while most of the attack prevention methods are based
on decision fusion schemes, there are only few methods aimed
at defending SSDF attacks using data fusion methods, which
may be difficult to implement but more accurate in identifying
the malicious SUs.

Therefore, in this paper, we propose two mechanisms
based on the private-prior peer-prediction mechanism with
both incentive scheme and attacker identification scheme to
motivate SUs to send honest sensing reports, and distinguish
malicious SUs from honest ones simultaneously for data
fusion and decision fusion. The continuous private-prior peer-
prediction mechanism is derived from the basic private-prior
peer-prediction mechanism in this paper, specifically for the
CSS where the probability density function of the signal
reports can be explicitly expressed. The two peer-prediction
schemes require the SU’s approximate subjective estimation
of the prior knowledge of the PU’s activity and the signal-to-
noise ratio (SNR) obtained by SNR estimation techniques [23].

Overall, the contributions of this paper are listed as below:

o We view the SSDF attack prevention problem from the
perspective of game theory, and design an effective and
incentive compatible mechanism to solve the problem.

o We propose an incentive SSDF attack prevention mech-
anism based on private-prior peer-prediction for decision
fusion, which is able to incentivize SUs’ truthful reports
and detect malicious SUs.

« We propose a continuous private-prior peer-prediction
mechanism to prevent attacks in the data fusion with low
computation overhead based on the binary private-prior
peer-prediction.

o« We evaluate our mechanism through simulation and
validate its performance in heavy SSDF attacks.

The rest of this paper is organized as follows. The system
model is described in detail in Section II. Then, a private-prior
peer-prediction method to incentivize SUs’ truthful reporting
and identify malicious suspects is applied to CSS based
on decision fusion in Section III. Next in Section IV, the
continuous private-prior peer-prediction method derived from
the basic idea is proposed. The scheme is aimed at motivating
SUs’ truthful reporting and identification of malicious suspects
in CSS based on data fusion. Simulation results are given in
Section V, and conclusions are drawn in Section VI.

II. RELATED WORK

In this section, previous study on SSDF attack prevention
schemes and peer-prediction methods are introduced.

A. SSDF Attack Prevention Scheme

In [16], an outlier-detection scheme with partial prior
knowledge of the PU was proposed to identify malicious SUs
whose results differ greatly from other SUs. In [17], a double-
sided neighbor distance algorithm with adaptive threshold
selection has been proposed to detect the outliers of the sensing
report vectors, which are extremely close to or far away from
other SUs’ reports. Both dependent and independent attacks
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are considered in the study and the scheme is able to recognize
multiple malicious SUs without any prior information of
attack strategies. In [18], Duan et al. have proposed a
mechanism with direct and indirect penalties to SUs when the
FC announces busy, but collisions impact the PU. The method
is designed to prevent both hit-and-run and stay-with attacks
under the circumstances where several cooperative attackers
are able to overhear the honest SUs’ reports. However, the
mechanism is invalid if some SUs only aim to disrupt the
CSS network, but are not interested in data transmission.

Recently, in light of artificial intelligence and data mining,
methods based on likelihood detection and clustering have
been proposed. Considering various types of honest and
malicious SUs, Soltanmohammadi and Naraghi-Pour in [21]
have introduced an iterative expectation maximization based
algorithm to identify malicious SUs. However, the high com-
putational complexity makes it difficult to implement. Inspired
by data mining methods, Hyder et al. in [22] have presented
an adaptive reputation clustering based algorithm to defend
against attacks. In their study, partitioning around medoid
algorithm is utilized to cluster SUs based on their binary report
vectors. Further, a reputation adjustment approach is applied
as a feedback loop to update the reputation of each node and
increase the number of clusters.

B. Peer-Prediction Method

In [24], Miller et al. have initially introduced the method
of peer-prediction to create incentives for online raters to
make honest reviews by appropriate rewards. Witkowski and
Parkes have improved the method and proposed the private-
prior peer-prediction mechanism in [25]. The peer-prediction
scheme is adequate for the circumstances where prior knowl-
edge is subjective and private to each agent. It has been
utilized to collect truthful reports on website reviews, pollution
detection [26] and private surveys [27], and is regarded as an
effective way to elicit truthful feedback. However, the original
private-prior peer-prediction method can only be effective
with decision fusion because its application is limited to
domains with binary signal reports [25]. Some continuous
peer-prediction methods have been proposed in [28] and [29],
but either the method is inadequate for the specific situation
where malicious SUs can take advantage of the scoring system
when sending contradictory information and signal reports, or
the computation and data transmission is too complex for the
method to be implemented on mobile devices.

III. SYSTEM MODEL
A. Local Spectrum Sensing With Energy Detection

In our system illustrated in Fig. 1, we consider a CRN with
one PU who has a license to transmit data in one channel and
N SUs who conduct local spectrum sensing independently
in a total number of T time slots. The two different states
of the channel are denoted by hypotheses #y and #;, which
represent the channel is idle or busy, respectively. Each SU i
has its subjective prior belief in regard to the state of the
channel P;(#) which is implicit to the FC and other SUs.
They remain constant in 7 time slots for simplicity. The SUs
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are assumed to be able to make an approximate estimation
of P(#;) based on the regularity of the PUs activity. The
aim of collaborative spectrum sensing is to solve the binary
hypothesis-testing problem with specific signal sensing tech-
niques. Energy detection is the most popular sensing method
because of its low computation complexity not requiring any
prior information of the PU’s signal. Consider the observed
signal x;(#) of the ith SU [30],

i), H
x‘(’)‘[h,-s(r)+n,-(t>, a4 W

where h; is the channel parameter of the sensing channel
between the PU and the ith SU, which remains constant during
the whole sensing process, s() is the instantaneous signal of
the PU and n;(¢) is additive white Gaussian noise. Assuming
the local energy detector measures the signal within a fixed
bandwidth W over an observation time window 7 in each time
slot, the energy E; which is measured in the frequency domain
follows a distribution as follows [1].

2
E~ 1430 7o @)
13,2, i

where )(2 4 indicates a central Ch1 square distribution with the
degrees of freedom 2u and )(2 4 (2y;) indicates a non-central
chi-square distribution with 24 degrees of freedom and a non-
centrality parameter 2y;. u is the time bandwidth product t W
which is assumed to be a constant for all SUs in 7' time slots
and known by the system. y; is the instantaneous SNR of the
ith SU which is varying across different SUs and time slots,
and can be calculated using the SNR estimation technique.

Among N SUs, there are M malicious SUs and they cannot
be dominant in a normal CSS network, thus M < %N .
All honest SUs report what they detect truthfully and are
uninterested in the final fusion results, while malicious SUs
report based on their attack strategies and attempt to dominate
the FC’s final decision.

B. Collaborative Spectrum Sensing
Based on Decision Fusion

In the decision fusion, the ith SU makes a binary decision,
denoted by D; € {0, 1}, on whether the channel is idle or
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busy by comparing the value of E; to a threshold 4;, and
generates a binary sensing report, denoted by S; € {0, 1}, sent
to the FC. The SU i has its own false alarm probability of
sensing, Pr,; = P(D; = 1|#p), missed detection probability
of sensing, Ppq,; = P(D; = 0|#;), false alarm probability
of reporting, Pyr; = P(Sl = 1|H) and missed detection
probability of reporting, P,,; = P(S;i = 0|#). The FC
aggregates all SUs’ binary reports together and makes the final
decision according to:

N .
<n, the FC decides #
Y = S; 3
Z ' {z n,  the FC decides 7. )

A majority rule decision results when the FC decides #; only
if more than half of the N SUs observe the channel is busy,
with the threshold n = %N .

C. Collaborative Spectrum Sensing Based on Data Fusion

In the data fusion, the sensing report S; € R™ is continuous.
Instead of sending the binary decision D;, the SU directly
transmits the detected signal energy S; = E; to the FC. Then,
the FC will make its decision based on all SUs’ signal reports
by applying the Neyman-Pearson criterion [14], namely,

N .
LRES) =[] P(Sil#h) [< %, the FC decides 76

. P(SilH0) the FC decides #;.
According to Eq. (2), P(S;|#y) and P(S;|#),

P(Si17) = sile? ®)

2“F( ) !
Li-1(/2yiSi)  (6)

Si+2yi i
G
2yi

where I, (y) is the modified Bessel function of the first kind
of order v [31],

P(Si|#) = —e

o0

U (iy) =

L) =i ()" @

= mI'(m+0o+1)\2

IV. PEER-PREDICTION METHOD FOR DECISION FUSION

In this section, we first introduce the private-prior peer-
prediction method for collecting truthful reports of SUs based
on the decision fusion protocol. Using a strictly proper scoring
rule, we then explain the mechanism to motivate SUs to report
honestly and identify malicious suspects by distinguishing
scores that different types of SUs report. Lastly, we propose an
uncertainty index and a method to enlarge the loss to malicious
SUs when conducting attacks; the method is based on the
threshold of the uncertainty index.

A. Private-Prior Peer-Prediction

The private-prior peer-prediction method is an incentive
compatible mechanism originally proposed to motivate agents
to report actual binary feedback on online reviewing websites.
Each agent will receive its reward from a fusion center and the
amount of the reward is depended on the agent’s report and
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the reports given by other agents [25]. In private-prior peer-
prediction, each agent i is coupled with another agent j = i+1
and is required to send an information report before sensing
the world state and a prediction report after sensing the world
state. The center will comprehend the implicit decision of each
agent by comparing its information and prediction reports,
and calculating the score of each agent, which determines the
agent’s reward, according to an appropriate scoring rule.

In our system, considering the existence of cooperative
attacks, each SU i has a peer SU j selected randomly from
other SUs without repetition in each time slot. Before sensing
the PU’s signal in the channel, the SU i is required to provide
its information report of the probability that the peer SU j
will report the channel being busy (S; = 1), denoted by
X j €10, 1], to the FC. X, ; can be expressed as,

Xi,j = Pi(Sj =1)
= Pi(S; = 11%0) - Pi(Hp)
+P;(S; = 1|#4) - Pi(94)

= Py ;- Pi(#0) + (1= Py, ;) - Pi(#) 8)

where P;(#Hy) and P;(#) are SU i’s sub]ectlve prior of the
PU’s activity, and P’,. and P’ . are SU j’s error rates of
reporting in SU i’s perspective. Assuming that wrin’ j and 1//}, j
are SU j’s missed detection attack rate and false alarm attack
rate observed by SU i, Pf . and P’ . can be calculated from
SU i’s respective subjectlve prior 1nformat10n according to

A
Py =
mj_(l

‘/’rin,j)
Vi)

= Ppag) Vpjt Prag (1=

mdj) W}nj+Pmdj (1- ©)
However, SU i cannot obtain P}a,j, P,;dj, y/fn,j and y/},j
directly from SU j. Thus, P} ; and P! m.; Will be estimated
by comparing the observation history vector of SU j to the
actual activity of the PU. Since neither of the SUs nor the
FC knows the exact activity of the PU, the SU i can compare
the observation history vector of SU j to a reference vector
that it believes to be the same as or similar to the activity
history of the PU to estimate SU j’s error rates. The SU i can
choose either the decision history vector of the FC or its own
observation history vector as the reference vector, depending
on their accuracy, and calculate the error rates of SU j by
summing the different bits between observation history vector
of SU j and the reference vector.

After observing the PU’s signal in the channel, the SU i
makes its own decision D; = d; and sends its prediction report
of the probability that peer SU j will report the channel being
busy (S; = 1|D; = d;), denoted by Y; ; € [0, 1], to the FC.
Y; j can be expressed as,

Yij = Pi(S; =1|D; =d;)
= Pi(S; = 11#0) - Pi(H|D; = d;)

+Pi(S; = 1|#) - P;(#1|D; = d;). (10)

For convenience, the prediction report is abbreviated as Yioj

when SU i observes the channel is idle and is abbreviated
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as Yi} j when SU i observes the channel is busy, namely
Y, = Pi(S; = 1|D; = 0)
Pl (1= Prai) Pi(#0) + (1 = P}, ) Prai Pi(74)
- Pud.i - Pi(#h) + (1= Pra,) Pi(76)
(1D
Y, = Pi(S;=1ID; = 1)

P} PraiPi76) + (1 = P} (1 = Pua.i) P(94)
B - Pi(H)) + (1 — Ppa,i) Pi(94)

Pfa i
(12)

The prediction report made by a well-functioning honest SU
with low Py, and Pjg are not identical to the information
report because more information about the channel has been
revealed after i senses the PU’s signal, as will be seen in the
sequel. Therefore, the FC is able to estimate SU i’s sensing
report by comparing X; ; and Y; ;.

Proposition 1: If all SUs satisfy Py + P, <1 and Prq +
Puna < 1, for any two SUs i and j, it holds that

P,‘(Sj =1Di=1)> P,'(Sj =1)> P,'(Sj =1|D; =0).
(13)

Proof: For any two SUs i and j, Pfj + P’ . < 1 always

holds because no SU will estimate P} + P’ . > 1 knowing
that all SUs’ error rates of reporting satlsfy Pf + P, < 1. So,

P,'(Sj =1Di=1)— P,'(Sj =1)

i (1 — Ppa,i) - Pi(#H) i
=P, ;) P(D; =1) Prj
—P} ;- Pi(Ho) — (1 — P, ) Pi(h)

1 i
e R GIRCORIUS
-[Pfa i B-(%) + (1 = Pua.i) Pi(#4)]

Pya,i - Pi(Hp)
P(D; =1)

Pl )Pi(4)]

+(1 = P, )0 = Ppa,i) Pi(71) + Pfj Pra,i- P (%)}
Pi(%)Pl(ﬂfl) i ;

B m[l = Ppj =Py~ Prai— Pudi
+(Pyj + Py )(Prai + Pud.i)]
Pi (%) Pi (5{1) ; ;

- m(l — Py = P ) = Prai = Pua,i)

> 0.

Thus, Pi(S; = 1|D; = 1) > Pi(S; = 1). Pi(S; = 1) >
P;(S; 1|D; 0) can be proved analogously by
symmetry. |

In our mechanism, to satisfy the condition of Proposition 1,
the FC will restrict participation in the CSS process to the
SUs for whom Py + Py, > 1 or Py + Pyug > 1. This is
wise because such SUs are either malicious SUs with high
attacking rates or honest SUs with low performance and their
decisions will corrupt the final CSS results severely. According
to Proposition 1, it is implied in the prediction report that SU i
has observed # if ¥; ; < X; j, or # if Y; ; > X; ;. Thus the
implied sensing report each SU makes in one time slot can be



GAN et al.: SECURE CSS

estimated by the FC according to the rule,

|1 Y > X
Sl_[() Yij <Xij. s
Note the fact that the accuracy in Pi . and Pr’;l . are unnec-

essary for Proposition 1 to hold. It ‘can be concluded that
imprecise estimation will have little influence on the accuracy
of the judgement on SU i’s decision using eq. (14).

For each honest SU, §; = D;, while for the malicious SU,
S; = o0i(D;), where o; {0,1} — {0,1} is a binary
function according to its attack strategy. In order to conduct
SSDF attacks, the malicious SU may not report X; ; and Y; ;
honestly. Therefore, a mechanism should be designed to
incentivize each SU to report truthful and accurate values of
X;,j and Y; ;, approaching as close as possible to the actual
probabilities P(S; = 1) and P(S; = 1|D; = d;) by giving
SUs different scores according to their reports. The score of
each SU in each time slot is defined by the scoring function,

Uy=a-RX;;,Sj))+p-RY;;,S;)+y (15)

Information Score Prediction Score

where R(x,q) is a strictly proper scoring rule and will be
introduced in the following subsection. & > 0, f > 0 and
y are parameters chosen according to different application
conditions. Such scores are cumulative as the sensing process
continues. A negative score can be a reflection of either
monetary punishment or frequency spectrum access limitation
and the negative benefits will be transferred as positive benefits
to the SUs as rewards for their honesty and accuracy.

B. Scoring Rules and Incentive Compatibility

A proper scoring rule R(x,q) incentivizes the agents’
accurate probabilistic prediction reports for a binary report
q € {0, 1}, by assigning different scores according to their
reports x. A strictly proper scoring rule maximizes the expec-
tation of the scores if and only if the prediction reports
equal the actual probabilities [32]. Furthermore, the binary
quadratic scoring rule, according to Selten [33], is an incentive
compatible strictly proper scoring rule. It is given by

R(x,0) =1 — x>

R(x,1) = 2x — x? (16)

for x € [0, 1]. Assuming p is the probability that ¢ = 1, the
expectation of the score is E[R(x,-)] = (1 — p)(1 — x?) +
p(2x — x?). By taking the derivative with respect to x, setting

it to zero, and checking the second-order condition, % =
2 .
2p—2x =0 & x = p,%[zx] = —2 < 0, we obtain a

maximum when x = p [25].

In addition, if R(x,-) is a strictly proper scoring rule and
o >0, R*(x,-) =a-R(x,q)+ p is also strictly proper [24].
In our scoring function U;(X; ;,Y; ), due to the temporal
separation of the information report and the prediction report,
X;,j and Y; ; are independent and thus E[U;(X;;, Y ;)] =
a - E[R(Xij,)] + B - E[RY:;,)|Di = di] + 7.
Therefore, E[U;(X;,;, Y; ;)] reaches the maximum when both
the information report and the prediction report maximize,
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which requires X; ; = P(S; = 1) and Y;; = P(S; = 1]
D; = d;) exactly. In a long term, an honest SU always expects
higher scores for its accurate information and prediction
reports, while the malicious user will have a certain loss in
score each time it announces falsified report data.

To keep the budget balanced, y = —+ >N [a -
R(X;;,Sj))+p - R(Y;;, Sj)]. The principle for designing a
and beta is to ensure the mechanism is individually rational
for only the honest SUs. Assume that M malicious SUs can get
a total reward %®; by occupying the channel and transmitting
data when the PU is absent but the FC announces the channel
is busy, and get a total reward %, by interfering with the PU
when the PU is present but the FC announces the channel is
idle. Suppose the system has a missed detection rate Q,, and
a false alarm rate Q s and each malicious user has an average
information score R,,(X, S) and an average prediction score
R, (Y, S). A minimum of positive coefficients a and 5 can be
derived from the inequality o - Ry, (X, S)+ - Ry (Y, S) +7 +
% Qr-P(Hy)+ % Om - P(H1) < 0. To balance the weights of
the information score and the prediction score, we set a = f
in our mechanism.

On the one hand, with the appropriate scoring function, a
rational malicious SU aware that it cannot gain a positive
income in each time slot when conducting attacks, tends to
announce honest reports when the loss exceeds its tolerance.
On the other hand, it is reasonable for the FC to suspect that
SUs with relatively low cumulative scores are malicious. Thus,
the FC sets an integer K and removes the decisions made by
K SUs with lowest cumulative scores from the decision pool.
The optimized value of K depends on M and N, and equals
M if all malicious SUs obtain lower scores than honest ones.

Furthermore, unlike other reputation based schemes pro-
posed previously, the scoring function proposed in this paper is
independent of the FC’s final decision. The reputation systems
in [19] and [20] rely on the FC’s decision and can easily
break down if the FC itself makes incorrect decisions due to
being misled by malicious SUs; this of course, forms positive
feedback and affects subsequent decision results. However, in
our proposed scheme, the score of each SU will not be affected
by an incorrect final decision and is more likely to be assessed
with an honest peer’s sensing report as long as M < %N and
Py + Py < 1, as assumed. Therefore, the scoring system is
more stable and robust than the reputation systems of previous
schemes.

C. Uncertainty Index and Threshold

While attacking, the malicious SU can minimize its loss
on scores by making the prediction report as close as
possible to the information report, i.e., reporting Yi?j =
Xij — ¢ under #H; or Yl.}j = X;; + ¢ under %y, where
¢ is a smallest possible positive number. Thus, it is nec-
essary to set a threshold to limit the minimum differ-
ence between X;; and Y; ;. By taking the derivative of
Y%(Pua, Pra) and Y'(Pua, Pra) with respect to P4 and

ay! ay! oYY oYY
Pya, 3P 0, 3P 0, Py 0 and 3P > 0. Thus,

Yl(Pmd, Pprg) is a decreasing function, While'YO(Pmd, Pra)

is increasing, with respect to both independent variables.
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In other words, assuming that Py, P, and P(#)) are fixed,
the honest SU with lower missed detection rate and false
alarm rate will make a higher prediction report Y! or a
lower prediction report Y0, compared to the honest SU with
relatively higher error rates, or the malicious SU who makes
prediction reports conservatively in order to minimize its loss.

Therefore, an individual uncertainty index ¢;; can be
defined as the uncertainty of SU i when it makes a prediction
report Y; j, which can be expressed by i’s error rates of
sensing derived inversely from prediction report Y; ;, denoted

by ﬁnj; dii and ﬁ;a,i, respectively. Furthermore, by comparing

R A ) Q) 4 or!l . 0
3Pma® 2Pra’ 9P and 5P, it can be concluded that Y is

more sensitive to Py than to Py, and Y'! is more sensitive
to Py, than to Pyg when Pg, < 0.5 and Py < 0.5, wh_ich
are always true in the real case. Thus, the SU with low Pn]1 A
is more confident and reliable than the one with high ﬁr{l di

under g and so is the SU with low P! o.; under #j. Therefore,

L L fa,
the individual uncertainty index ¢;; can be expressed as

the maximum of P’ . on condition that 2 .; = 0 when
rEporting YiO, or maximum of ﬁ}a,i on condition that
Pnj1 4.; = 0 when reporting Yl.l. The expression for ¢; ; is then

(Pf,j_Yi,j)P(%) , lf Xi,j > Yi,j

[¥ij—(1—Pup | PO0)
Pij = [vi;—(1—Pa.p | PO) a7
i,j —(1=Ppmj 1 .

(P_/,_/*Yi,_j)P(%) , if Xi,j < Yi,j~
Eq. (17) above can be derived from eqs. (11) and (12) by
setting Pry; = 0 and Pyq,; = 0, respectively. To compute

the uncertainty index, the FC observes each SUs report error
rate Py and P, ;, and prior belief P(#;) with the activity
history of the PU and all SUs. Typically, the SU with a
high uncertainty index is either a badly-functioning one who
cannot be certain whether another honest SU will make the
same prediction, or a malicious one sending a conservative
falsified prediction report close in value to its information
report. Therefore, the FC sets a threshold 6 for the uncertainty
index so that the decision made by the SU whose ¢; ; > ¢ will
be removed from the decision pool and will not be considered
by the FC when it aggregates SUs’ decisions and decides the
final result. # is unknown to all SUs and will be designed
according to typical error rates of normal SUs so that most
of the well-functioning honest SUs’ uncertainty indices are
below the threshold.

Furthermore, for the minority of honest SUs whose uncer-
tainty index exceeds the threshold, their best choice is still
to report honestly and it is unnecessary for them to adjust
their prediction reports because the income only comes from
the score, as determined by the accuracy of X;; and Y; ;,
rather than acceptance of their decisions by the FC.
On the contrary, the income of the malicious SUs comes
from both their scores and the FC’s final decision. In order
to falsify the sensing results, malicious SUs have to decrease
their uncertainty indices below the threshold by enlarging the
difference between their information reports and prediction
reports to be similar to a typical honest user, to ensure that their
misleading decisions will be taken into account by the FC.
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Algorithm 1 A Private-Prior Peer-Prediction Method for CSS
1: Given the time slot index ¢+ = 0, the FC initializes the
parameters a and S, the threshold # and the number of
malicious suspects K

: for each time slot ¢ do

Remove the SUs with Py + Py, > 1 and Pro+ Ppg > 1;

for each SU i do
Choose an SU j # i randomly which isn’t the peer of
any previous SU;

6 Ask SU i for its information report X; ;;

7:  end for

8

9

A

All SUs sense the signal of the PU in the channel;
for each SU i do

Ask SU i for its prediction report Y; ;;

11: Get the implied decision using Eq. (14);

12: Calculate uncertainty index ¢; ; utilizing Eq. (17);

13: if ¢; ; > 6 then

14: Remove SU i’s decision from the decision pool;

15: end if

16:  end for

17:  Calculate each SU’s score using Egs. (15) and (16);

18:  Remove the decisions of K SUs with lowest accumula-
tive scores from the decision pool;

19:  Make the final decision of CSS by fusion rule in the
decision pool;

20: end for

Consequently, they have to afford more loss for conducting
attacks because the lower uncertainty index leads to further
distance between falsified Y; ; and actual P(S; = 1|D; =d;),
resulting in a lower average prediction score.

In Algorithm 1, we provide the procedures of the proposed
private-prior peer-prediction algorithm in detail. In the follow-
ing section, we will examine the effectiveness of the algorithm
by simulation.

V. PEER-PREDICTION METHOD FOR DATA FUSION

In this section, we first propose a continuous peer-prediction
method for elicit truthful reports from SUs based on data
fusion. Then, we utilize a continuous strictly proper scor-
ing rule to incentivize SUs to report honestly and identify
malicious suspects simultaneously. In addition, we will prove
the incentive compatibility of the continuous private-prior
peer-prediction method by verifying it is a perfect Bayesian
equilibrium. Finally, a report consistency threshold is proposed
to prevent SUs sending contradictory reports to mitigate their
loss while attacking.

A. Continuous Private-Prior Peer-Prediction

In addition to the basic private-prior peer-prediction, in
order to incentivize SUs to report honest continuous signals
in the data fusion, we propose continuous private-prior peer-
prediction based on the fundamental case. Similarly, the FU
selects a peer SU j randomly for each SU i without repetition
in each time slot. Before the energy detector senses the PU’s
signal in the channel in each time slot, each SU i is required to
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predict the probability density function (PDF) of the energy of
the received signal reported by its peer SU to the FC, denoted
as X; j. According to Eq. (2), the energy of the signal that
SU j receives follows the linear combination of two chi-square
distributions, namely,

Sj ~ Pi(H0) 13, + Pi(96) 25, (27i.}) (18)
where y; ; is the jth SU’s SNR from prospective of SU i
before sensing the signal in the channel. Because the time
bandwidth product is a constant by assumption, there are two
degrees of freedom P;(#) and y; ; when deciding the actual

distribution of the signal energy. Therefore, SU i merely needs
to report P;(#) and y; ; to the FC and the PDF is given by

Xi,j(x) = fi(S; = x)
= Pi(#) Pi(S; = x|#) + Pi(Hp) P (S} = x|Hp)

u—1
) ’ Ii1(/2yix)

— X
a3,

P32 —Mz””( a
= rj 1)26 2Vi,j

1

+P; (Hp) 3T ()

19)

After observing the PU’s signal and measuring the energy
of the signal using the energy detector, SU i is required to
submit the signal report S; = E; and the prediction report
which is the PDF of the energy observed by SU j, denoted
by Y; ;, based on the signal it received. After SU i updates
the posterior probability, Y; ; can be obtained as

Y j(x)
= fi(§; = x|E; = ¢)
= Pi(H|E; = ¢;))P;i(S; = x|H)
+P;(H|E; = ;) P;(S; = x|H)

=2l x A ;
(ﬁ) I,u—l( 2)’1-,]-)6)

1 _
= Pi(H|E; =€i)§€

-1 =X
xt e

+Pi(#|Ei = e;) (20)

20T (@)

where y/ . is the SNR of the signal received by SU j, which
is estimated by SU i after it receives the PU’s signal and

Pi(H|E; = e;)
P(E; = e;|9)P; (7))

= P(E;i = ei|#) Pi(#h) + P(E; = e;|%0) P (%)

21

which can be obtained from Egs. (5) and (6). Similar to
the information report, Y; ; also has two degrees of freedom
P;(#|E; = e;) and yi/,j. Once SU i reports the two values,
its prediction report is uniquely determined. In addition, all
subjective prior information about the PU’s signal of each SU
will not affect its signal report, but merely the accuracy of
its information and prediction report, which are related to the
score it will obtain in each time slot.

Similarly, K SUs who have the lowest cumulative scores
will be removed from the fusion pool when the FC makes the
final decision.
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B. The Continuous Scoring Rule

Without loss of generality, if the peer of SU & is SU i, and
the peer of SU i is SU j, the score of SU i in each time slot
is the weighted sum of its signal score, information score and
prediction score calculated by the continuous strictly proper
scoring rule, namely,

U =aRYni,Si)+ PRX;;,S;) +yR(X;;,S))+0 (22)

Signal Score Information Score  Prediction Score

where a, £ and y are positive coefficients chosen according
to the actual situation and J is a parameter to balance the
average score of the whole system in each time slot to equal
zero. The function R(y, xo) is the quadratic scoring rule
defined by

¥ (@)dx

R(Y(x). x0) = 2y (xo) — / (23)

xeQ

where Q is the domain of x [34]. Similar to the binary rule,
one can strictly maximize the expectation of the continuous
quadratic scoring function by reporting the PDF y(x) which
is equal to the actual distribution of the signal x [32], [34].

C. Incentive Compatibility

To prove the incentive compatibility of the mechanism,
generally consider the score of SU i in the system, with the
relationship among the SUs £, i and j the same as is presumed
previously. We assume that SU & and SU j are honest and
that SU & believes SU i is also honest. SU i’s belief that §;
will follow the distribution f;(S;) before receiving the PU’s
signal, that S; will follow the distribution f;(S;|E; = e;)
after receiving the PU’s signal and that SU /4 will make the
density f,(S;|E, = ep) the prediction report, is consistent
being derived from the Bayes rule under the assumed strategy
profile. In addition, because of the temporal separation, the one
SU’s information report, signal report and prediction report
only affects their corresponding scores and do not interfere
with other SUs. Thus to maximize the total score, the SU i
should maximize the three scores independently. First of all,
only by reporting X; ; and Y; ; that follow the actual distrib-
ution of the signal S; can SU i maximize the expectations
of its information and prediction scores. Secondly, due to
the stochastic relevance of S; and Ej, fn(Si|En = ep) #
fn (Si |En = ep) if S; and S‘i are two different random variables
distributed differently. Recalling the fact that the strict proper
scoring rule strictly maximizes the expectation only when the
signal follows its distribution function, SU i can only obtain
the maximum expectation of the signal score by truthfully
providing its signal report following the actual distribution.
Thus, the mechanism is sequentially rational.

Because of the consistency and sequential rationality of
the mechanism, it is a perfect Bayesian equilibrium when
every SU truthfully reports the sensing data, and it is strict
since the strict proper scoring rule guarantees maximizing the
expectation of the score uniquely [29]. Therefore, it is a strictly
incentive compatible mechanism to incentivize SUs to report
truthfully.
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Fig. 2. Contour plot of log PG T70) for different values of SNR; and
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signal reports S; (1« = 15 is assumed).

D. Report Consistency

In order to achieve a high score while conducting SSDF
attacks, the malicious SU may submit the information and
prediction report as accurately as possible but misstate the
signal report if no further punishment is rendered to deter
the report inconsistency. Thus, a mechanism to check the
consistency among the three reports of one SU is proposed
to identify potential attacks. Taking advantage of the data
fusion rule, the malicious SU i can effectively manipulate
the final decision by reporting S; as far away as possible
from the actual E; such that gg: }ig; is much smaller than
A under H; or much larger than A under # to neutralize the
contribution of other honest SUs. The value of ?%IZ‘); can be
obtained with the signal report of the SU and y; by updating
the two chi-square distribution functions in egs. (5) and (6).
In addition, when it truthfully reports the information and

prediction reports, ﬁg{ I;{ég can be obtained as,
1

P(Ei|76)  Pi(#)(1 — Pi(#|Ep))
P(Ei|70) — Pi(#4|EN)(1 — Pi(#4))
where P;(#4) and P;(#|E;) can be obtained directly from the

information and prediction reports. If SU i truthfully reports
S; = E;, and y; obtained by the FC is consistent with the

(24)

actual SNR;, ﬁggjifég = ﬁgi‘l;{ég is always true.
Fig. 2 demonstrates that if ggi Ii{ég is certain, the truthful

signal report is restricted in a limited domain by the range of
the reasonable SNR. Therefore, any signal report outside of
the range can be regarded as a falsified report and thus can be
rejected by the FC. In order to identify such inconsistency,
the system sets a consistency threshold 6 to constrain the
error between the implied SNR;, denoted by y;, and y;.
If ﬁggi%; = gg:%; is assumed, 7; can be calculated by
eqgs. (5) and (6) or indicated by the contour plot with the

corresponding time bandwidth product and replacing P(Si174)

P(Si1%0)
with gzg }ig; obtained by eq. (24). The signal report made by

the SU who satisfies |y; — y;| > 6 will be removed by the
FC from the fusion pool. Not expecting its signal report to be
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Algorithm 2 A Continuous Private-Prior Peer-Prediction
Method for CSS
1: Given the time slot index t+ = 0, the FC initializes the
parameters a, f5, y, the consistency threshold 6 and the
number of malicious suspects K
2: for each time slot ¢ do
3:  for each SU i do
4: Choose an SU j # i randomly which isn’t the peer of
any previous SU,;
Ask SU i for its information report X; ;;
. end for
7:  All SUs sense the signal of PU in the channel with the
time bandwidth product u;
8: for each SU i do
9: Ask SU i for its signal report S; and prediction report
Y

AN

10: Check if S; is restricted in the range based on the
consistency checking scheme;

11: if |)?i—yi|>6then

12: Remove SU i’s decision from the fusion pool;

13: end if

14:  end for

15:  Calculate each SU’s score using Egs. (22) and (23);

16:  Remove the decision of K SUs with lowest cumulative
scores from the fusion pool;

17:  Make the final decision of the CSS by fusion rule in the
fusion pool;

18: end for

rejected, the malicious SU, otherwise, will adapt its informa-
tion and prediction report. As a consequence, it will expect
lower scores by the scoring rule since the information and
prediction report do not conform with the actual distributions.

The proposed continuous private-prior peer-prediction
method for data fusion is illustrated in Algorithm 2 in detail
and we will assess the performance of the algorithm in the
next section.

VI. SIMULATION RESULTS
A. Decision Fusion

In this section, we demonstrate the effectiveness of
Algorithm 1 for collaborative spectrum sensing in cognitive
radio based on decision fusion by simulation. Assume that
due to the varying distances of different SUs, each SU i has
its error rates of sensing Ppq; € [0.05,0.1] and P,; €
[0.05,0.1]. Also assume each SU has subjective prior knowl-
edge of the activity of the PU with an error up to £10%
compared to the actual value. Trained by several groups of
typical sensing data, the threshold of the uncertainty index 6
is set as 0.1. We consider a large number of malicious SUs
conducting SSDF attacks who are able to afford any great loss
from the scheme. All malicious SUs attack simultaneously,
while each controls its error rates of reporting Py < 0.5,
P, < 0.5 and the uncertainty index ¢; ; < 6 to avoid its
decision being removed by the FC from the decision pool.
Parameters a and f are set as 1. A censored majority rule
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Fig. 3. The score variation under different types of SU behaviors, with
subjective prior information P (#]).

is adopted in our proposed scheme and we will compare our
proposed scheme with the uncensored majority rule scheme.

1) Effectiveness of Incentive Mechanism: In the simulation,
we set the number of SUs N as 10 and the total number of
time slots 7 as 100. The number of attackers M is set to
be 3 and P(#;) = 0.5. In Fig. 3 we demonstrate the varying
scores between honest SUs and malicious SUs according
to time. After t+ = 50, one of the honest SUs becomes
malicious, and after + = 80, the initial three malicious SUs
stop conducting attacks. The following results can be inferred
from the observations. (i). There is merely minor variation of
the scores of different SUs among the same type due to the
different sensing error rates and the peers matched to them in
each time slot. (ii). After 10 time slots, all honest SUs gain
cumulative scores higher than malicious SUs, and the scores
of malicious SUs decrease rapidly while those of honest SUs
increase, so that the scores in the whole CSS system sum up
to zero. (iii). The proposed incentive scheme is sensitive and
impartial because once an honest SU turns malicious, its score
reduces rapidly as fast as the scores of Fakother malicious SUs.
Moreover, as long as a malicious SU stops sending falsified
reports, the cuamulative score merely fluctuates slightly and the
total penalty remains approximately constant. It is interesting
that after + = 80, the scores of both the initial malicious SUs
and honest SUs increase slightly. That is because the score of
the SU who turns malicious partway still decreases, but the
total income of the system has to remain zero.

To demonstrate the proposed incentive algorithm is robust,
Fig. 4 is plotted for the case when all SUs do not have
accurate subjective prior knowledge and assume a com-
pletely arbitrary P;(#;) € [0, 1]. @ is set as 0.5. Compared
to Fig. 3, the scores of SUs among the same type vary more
widely because of the incorrect estimation of P (%) when
computing information and prediction reports with Eqs. (8),
(11) and (12). Although the SU who obtains more accurate
subjective prior belief gains more reward, malicious SUs still
have the lowest scores, even if some of the malicious SUs get
more accurate prior knowledge. However, every SU is actually
able to get a relatively accurate subjective prior knowledge
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from the expected regularity of the PU’s activity, so P;(#])
will be more reliable than what is assumed in this simulation.

2) Stability of the Scores: In the simulation, we set the
number of SUs N as 20 and the total number of time slots 7'
as 200. We examine the stability of the scoring function when
M and P(#H;) vary. It can be observed from Fig. 5 that
honest SUs always have higher average cumulative scores than
malicious SUs do, despite variation in the values of P (#]) and
the number of malicious SUs. When M declines, the malicious
SU is more likely to be matched with an honest peer and thus
will have to afford greater loss than the situation where it is
matched with another cooperating attacker. The difference in
scores between honest SUs and malicious SUs decreases when
P(#,) is extremely high or low mainly because malicious
SUs have fewer opportunities to attack while maintaining
P; < 0.5 and P, < 0.5, and honest SUs have lower
expectations on prediction scores under those circumstances.
However, an adaptive design of @ and £ can be introduced to
the proposed scheme according to P (%)) observed by the FC,
in order to maintain the loss in scores resulting from malicious
activities constant when P (7)) varies.
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Fig. 6. Comparison of the detection rates for the proposed scheme and the
ARC scheme under heavy SSDF attacks.

3) Performance Evaluation: In this section, we set the
number of SUs N as 200, and the total number of time
slots 7 as 200. The number of attackers M varies from
86 to 100 and P(#) varies from 0.25 to 0.75. We do not
consider the maximum loss that a malicious SU can afford.
We demonstrate better performance results from our peer-
prediction based mechanism than that of the ARC scheme
proposed in [22]. In Fig. 6, the detection rate of the ARC
scheme is below 85% because some honest SUs are aggregated
into malicious clusters and have relatively lower reputation.
Considering the rationality of malicious SUs and their toler-
ance for loss, they have to reduce their attacking rate or even
become reluctant to attack, for they cannot expect a positive
income when attacking.

B. Data Fusion

In this section, we use simulation to illustrate the per-
formance of Algorithm 2 in collaborative spectrum sensing
based on data fusion. In the simulation, we assume the time
bandwidth product ¢ = 15 and the average SNR of all SUs
y = 15 dB. To optimize the detection rate, we set the threshold
A =1 and consistency threshold # = 5. Similar to the decision
fusion, we consider heavy SSDF attacks and every malicious
SU can afford any large loss from the attacks without turning
into a honest node when the punishment reaches the maximum
of its tolerance. Parameters «, f and y are set as 20 because
the scale of the continuous peer-prediction itself is not large
enough.

1) Effectiveness of Incentive Mechanism: In the simulation,
we will demonstrate the score difference between honest SUs
and malicious SUs. We set the number of SUs N as 10
and the total number of time slots 7 as 100. The number
of malicious SUs M is set as 3. As is illustrated in Fig. 7,
all honest SUs have scores larger than 15, while those of the
malicious SUs are all less than —50. A significant gap between
malicious SUs and honest ones can be observed. However,
the score of continuous private-prior peer-prediction is slightly
more unstable than in the binary case, since the SUs report
actual continuous sensing data, instead of 0 and 1 decisions.
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The larger diversity of the reports contributes to the fluctuation
and the larger diversity of the scores within the SU group with
the same type.

2) Stability of the Scores: We set the number of SUs N
as 20 and the total number of time slots 7 as 200 in order to
examine the stability of the mechanism with different numbers
of attackers and values of P(#4). It is indicated from Fig. 8
that honest SUs always have a significantly higher average
score than the malicious SUs. Similar to the results found for
decision fusion, a smaller number of malicious SUs leads to
heavier punishment to each attacker. In addition, malicious
SUs earn more scores when the PU has a higher possibility
of occupying the channel, which mainly results from different
values that malicious SUs report to mislead the sensing results
based on the current attack strategy. Such unbalance will also
be adjusted by assigning different values of the coefficients a,
S and y when P(#)) changes.

3) Performance Evaluation: Fig. 9 shows the improvement
in detection probability (Qg4) of the proposed continuous
private-prior peer-prediction method compared to the basic
scheme without attack prevention. We set the number of
SUs N as 100 and the total number of time slots 7" as 200.
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The number of malicious SUs M varies from 40 to 50 and
P(#,) is set as 0.25, 0.5 and 0.75. Observe that when the num-
ber of malicious SUs is less than 50%, the proposed method
has a significantly better performance than the method without
attack prevention. The detection rate of the proposed method is
above 95% no matter what P (#)) is, while that of the method
without attack prevention is around 75% to 90%. The value of
the detection threshold 4 is selected according to the different
requirements of false alarm probability and missed detection
probability, which also leads to the results demonstrated
in Fig. 9 that the system performs the best when P (#;) = 0.75
without using the attack prevention method. However, the
proposed scheme performs the worst when P(#) = 0.75
because malicious SUs obtain relatively higher scores when
the PU occupies the channel more frequently as is shown
in Fig. 8.

VII. CONCLUSION

In this paper, we have proposed two incentive attack pre-
vention schemes, for collaborative spectrum sensing in CRNs
based on decision fusion and data fusion to motivate SUs to
report truthful sensing results and identify malicious suspects
based on private-prior peer-prediction and continuous private-
prior peer-prediction.

In the decision fusion, each SU’s local sensing decision is
judged by comparing the relationship between the information
report and the prediction report, and then the score can be
calculated by the binary quadratic scoring rule; while in the
data fusion, each SU’s local signal report is directly sent to
the FC, together with the information report and the prediction
report for calculating the score by utilizing the continuous
quadratic scoring rule. In order to increase the loss incurred
by malicious SUs, we have introduced the threshold of the
uncertainty index for the decision fusion to constrain the value
of the prediction reports, and consistency threshold for the
data fusion to ensure the coherence among signal, information
and prediction reports. Compared to the proposed method for
decision fusion the continuous private-prior peer-prediction
method further improves the detection rate at the cost of little
added complexity. From the simulation results, we can observe
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that the honest SUs obtain significantly higher scores than
the malicious SUs and that the proposed schemes have higher
detection probabilities compared with the ARC scheme and the
methods without attack prevention under heavy SSDF attacks.
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