IEEE COMPUTER ARCHITECTURE LETTERS, VOL.17, NO.2, JULY-DECEMBER 2018 155

The Architectural Implications of Cloud
Microservices

Yu Gan and Christina Delimitrou

Abstract—Cloud services have recently undergone a shift from monolithic
applications to microservices, with hundreds or thousands of loosely-coupled
microservices comprising the end-to-end application. Microservices present both
opportunities and challenges when optimizing for quality of service (QoS) and
cloud utilization. In this paper we explore the implications cloud microservices have
on system bottlenecks, and datacenter server design. We first present and
characterize an end-to-end application built using tens of popular open-source
microservices that implements a movie renting and streaming service, and is
modular and extensible. We then use the end-to-end service to study the
scalability and performance bottlenecks of microservices, and highlight
implications they have on the design of datacenter hardware. Specifically, we
revisit the long-standing debate of brawny versus wimpy cores in the context of
microservices, we quantify the I-cache pressure they introduce, and measure the
time spent in computation versus communication between microservices over
RPCs. As more cloud applications switch to this new programming model, it is
increasingly important to revisit the assumptions we have previously used to build
and manage cloud systems.

Index Terms—Super (very large) computers, distributed applications, application
studies resulting in better multiple-processor systems

4

1 INTRODUCTION

CLOUD computing services are governed by strict quality of service
(QoS) constraints in terms of throughput and tail latency, as well
as availability and reliability guarantees [8]. In an effort to satisfy
these, often conflicting requirements, cloud applications have gone
through extensive redesigns [3], [4], [10]. This includes a recent
shift from monolithic services that encompass the entire service’s
functionality in a single binary, to hundreds or thousands of small,
loosely-coupled microservices [4], [18].

Microservices are appealing for several reasons. First, they sim-
plify and accelerate deployment through modularity, as each micro-
service is responsible for a small subset of the entire application’s
functionality. Second, microservices can take advantage of language
and programming framework heterogeneity, since they only
require a common cross-application API, typically over remote pro-
cedure calls (RPC) or a RESTful API [1]. In contrast, monoliths make
frequent updates cumbersome and error-prone, and limit the set of
programming languages that can be used for development.

Third, microservices simplify correctness and performance
debugging, as bugs can be isolated to specific components, unlike
monoliths, where troubleshooting often involves the end-to-end
service. Finally, microservices fit nicely the model of a container-
based datacenter, with each microservice accommodated in a sin-
gle container. An increasing number of cloud service providers,
including Twitter, Netflix, AT&T, Amazon, and eBay have adopted
this application model [4].

Despite their advantages, microservices change several assump-
tions we have long used to design and manage cloud systems. For
example, they affect the computation to communication ratio, as com-
munication dominates, and the amount of computation per microser-
vice decreases. Similarly, microservices require revisiting whether
big or small servers are preferable [7], [11], [12], quantifying the i-

o The authors are with the Cornell University, Ithaca, NY 14850.
E-mail: {yg397, delimitrou}@cornell.edu.

Manuscript received 2 Apr. 2018; revised 27 Apr. 2018; accepted 11 May 2018. Date of
publication 21 May 2018; date of current version 4 June 2018.

(Corresponding author: Christina Delimitrou.)

For information on obtaining reprints of this article, please send e-mail to: reprints@iece.
org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/LCA.2018.2839189

cache pressure from their code footprints [9], [15], and determining
the sources of performance unpredictability across an end-to-end
service’s critical path. To answer these questions we need representa-
tive, end-to-end applications that are built with microservices.

In this paper we investigate the implications the microservices
application model has on the design of cloud servers. We first present
anew end-to-end application implementing a movie renting, streaming,
and reviewing system comprised of tens of microservices. The service
includes applications in different languages and programming mod-
els, such as node.js, Python, C/C++, Java/Javascript, Scala, and Go,
and leverages open-source frameworks, such as nginx, memcached,
MongoDB, Mahout, and Xapian [14]. Microservices communicate
with each other over RPCs using the Apache Thrift framework [1].

We characterize the scalability of the end-to-end service on our
local cluster of 2-socket, 40-core servers, and show which microservi-
ces contribute the most to end-to-end latency. We also quantify the
time spent in kernel versus user mode, the ratio of communication to
computation, and show that the shift to microservices affects the big
versus little servers debate, putting even more pressure on single-
thread performance. For the latter we use both power management
techniques like RAPL on high-end servers, and low-power SoCs like
Cavium’s ThunderX. Finally, we quantify the i-cache pressure micro-
services induce, and discuss the potential for hardware acceleration
as more cloud applications switch to this programming model.

2 RELATED WORK

Cloud applications have attracted a lot of attention over the past
decade, with several benchmark suites released both from academia
and industry [9], [10], [14], [19], [20]. Cloudsuite for example,
includes batch and interactive services, and has been used to study
the architectural implications of cloud benchmarks [9]. Similarly,
TailBench aggregates a set of interactive benchmarks, from web
servers and databases, to speech recognition and machine transla-
tion systems, and proposes a new methodology to analyze their per-
formance [14]. Sirius also focuses on intelligent personal assistant
workloads, such as voice to text translation, and has been used to
study the acceleration potential of interactive ML applications [10].

A limitation of current benchmark suites is that they exclusively
focus on single-tier workloads, including configuring traditionally
multi-tier applications like websearch as independent leaf nodes [14].
Unfortunately this deviates from the way these services are deployed
in production cloud systems, and prevents studying the system prob-
lems that stem from the dependencies between application tiers.

3 THE END-TO-END MOVIE STREAMING SERVICE

We first describe the functionality of the end-to-end Movie Streaming
service, and then characterize its scalability for different query types.

3.1 Description

The end-to-end service is built using popular open-source microser-
vices, including nginx, memcached, MongoDB, Xapian, and node.js to
ensure representativeness. These microservices are then connected
with each other using the Apache Thrift RPC framework [1] to pro-
vide the end-to-end service functionality, which includes displaying
movie information, reviewing, renting and streaming movies, and
receiving advertisement and movie recommendations. Table 1 shows
the new lines of code (LoC) that were developed for the service, as
well as the LoCs that correspond to the RPC interface; hand-coded,
and auto-generated by Thrift. We also show a per-language break-
down of the end-to-end service (open-source microservices and RPC
framework) which highlights the language heterogeneity across
microservices. Unless otherwise noted, all microservices run in
Docker containers to simplify setup and deployment.

Display Movie Information. Fig. 1 shows the microservices graph
used to load and display movie information. A client request first hits
aload balancer which distributes requests among the multiple nginx
webservers. nginx then uses a php-fpm module to interface with
the application’s logic tiers. Once a user selects a movieID,

1556-6056 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7779-4134
https://orcid.org/0000-0001-7779-4134
https://orcid.org/0000-0001-7779-4134
https://orcid.org/0000-0001-7779-4134
https://orcid.org/0000-0001-7779-4134
mailto:

156 IEEE COMPUTER ARCHITECTURE LETTERS, VOL.17, NO.2, JULY-DECEMBER 2018

TABLE 1
Code Composition of the Movie Streaming Service

LoCs for RPC/REST

Service Total New Communication Unique Per-language LoC breakdown

LoCs Protocol Handwritten Autogenerated Microservices (end-to-end service)
Movie 10,263 RPC 8,858 46,616 33 30% C, 21% C++,20% Java, 10% PHP, 8% Scala
Streaming 5% node.js, 3% Python, 3% Javascript

ComposePage aggregates the output of eight Thrift microservices,
each responsible for a different type of information; P1lot, Thumb-
nail, Rating, castInfo, Reviews, Photos, Videos, and a
Movie Recommender based on collaborative filtering [6]. The memc-
ached and MongoDB instances hold cached and persistent copies of
data on movie information, reviews, and user profiles, algorithmically
sharded and replicated across machines. Connection load balancing is
handled by the php-£fpm module. The actual video files are stored in
NFS, to avoid the latency and complexity of accessing chunked
records from non-relational DBs. Once ComposePage aggregates the
results, it propagates the output to the front-end webserver.

Rent/Stream Movie. Thrift service Rent Movie uses an authoriza-
tion module in php (userAuth) to verify that the user has sulfficient
funds to rent a movie, and if so, starts streaming the movie from disk
vianginx-hls,a production nginx module for HTTP live streaming.

Add Movie Reviews. A user can also add content to the service, in
the form of reviews (Fig. 2). A new review is assigned a unique;; and
is associated with a movie;;. The review can contain text and a
numerical rating. The review is aggregated by ComposeReview, and
propagated to the movie and user databases. MovieReview also
updates the movie statistics with the new review and rating, via
UpdateMovie.

Not pictured in the figures, the end-to-end service also includes
movie and advertisement recommenders, a search engine, an ana-
lytics stack using Spark, and video playback plugins.

3.2 Methodological Challenges of Microservices

A major challenge with microservices is that one cannot simply
rely on the client to report performance, as with traditional client-

{ Load Balancer |
o |
Front-
fastcgi
hp-fom ;

All arrows are Thrift RPCs I

(ads] Compose
Phase

end

castinfo pho@ videos

NFS

Fig. 1. Dependency graph for browsing & renting movies.

h

Front-

Compose
Phase

All arrows are Thrift RPCs l

[UpdateUser] [Reviewstorage] [UserReview] [MovieReview HUpdateMovie] Store
Phase

memcached J

Fig. 2. Dependency graph for creating a new movie review.

server applications. Resolving performance issues requires deter-
mining which microservice is the culprit of a QoS violation, which
typically happens through distributed tracing. We developed a dis-
tributed tracing system that records latencies at RPC granularity
using the Thrift timing interface. RPCs and REST requests are time-
stamped upon arrival to and departure from each microservice,
and data is accumulated, and stored in a centralized Cassandra
database. We additionally track the time spent processing network
requests, as opposed to application computation. In all cases the
overhead from tracing is negligible, less than 0.1 percent on 99th
percentile latency, and 0.2 percent on throughput [17].

4 EVALUATION

4.1 Scalability and Query Diversity

Fig. 3 shows the throughput-tail latency (99th percentile) curves for
representative operations of the Movie Streaming service, when run-
ning on our local server cluster of two-socket 40-core Intel Xeon serv-
ers (E5-2660 v3), each with 128 GB memory, connected to a 10 GBps
ToR switch with 10 Gbe NICs. All servers are running Ubuntu 16.04,
and power management and turbo boosting are turned off. To avoid
the effects of interference between co-scheduled applications, we do
not share servers between microservices for this experiment. All
experiments are repeated 10 times and the whiskers correspond to
the 10th and 90th percentiles across runs.

We examine queries that browse the site for information on
movies, add new movie reviews, and rent and stream a selected
movie. Across all three request types the system saturates follow-
ing queueing principles, although requests that process payments
for renting a movie incur much higher latencies, and saturate at
much lower load compared to other requests, due to the high band-
width demands of streaming large video files. The latency curve
for queries that browse movie information is also somewhat
erratic, due to the variance in the amount of data stored across
movies. The dataset consists of the 1,000 top-rated movie records,
mined from IMDB, ca. 2018-01-31.

4.2 Implications in Server Design
Cycles Breakdown Per Microservice. Fig. 4 shows the breakdown of
the end-to-end latency across microservices at low and high load
for Movie Streaming. We obtain the per-microservice latency using
our distributed tracing framework, and confirm the execution time
for each microservice with Intel’s vTune. At each load level we pro-
vision microservices to saturate at similar loads, in order to avoid a
single tier bottlenecking the end-to-end service, and causing the
Add Movie Review

Browse Movie Info Movie Rent+Stream

" 500

@ s s

[]
" S S REKRES

400
30
300
20
200

10 100)

Tail Latency (msec)

295 395 495 %5 295 495 695 895 1095
Queries per Second (QPS)

o
&
ol
&

50 100 150 200 250

Fig. 8. Throughput-tail latency curves for different query types of the end-to-end
Movie Streaming service.

Low Load (Lat=3721usec) ~ High Load (Lat=16,955usec)

nginx wm== ReviewStorage
AssignR UserReview
MovielD === MovieReview
ProcText memcached
ReviewID m=== Mongodb
Compose

Fig. 4. Per-microservice breakdown for the Movie Streaming service.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL.17, NO.2, JULY-DECEMBER 2018 157

I Front-end
[0 Bad Speculation

=3 Back-end
[0 Retiring

Movie Streaming

g
‘;80 0.8
o
% 60 i 0.68
2 40 0.4~
@
¥§20 0.2
(@)
0+ T FQL 2 g AD>PR b(\o'o
S ST T 9 o @ Y9 PN
ESLESTEESTs 8
'S S $

Fig. 5. Cycle breakdown and IPC for the movie streaming service.

remaining microservices to be underutilized. At the moment this
allocation space exploration happens offline, however we are
exploring practical approaches that can operate in an online and
scalable manner as part of current work. At low load, the front-end
(nginx) dominates latency, while the rest of microservices are
almost evenly distributed. MongoDB is the only exception,
accounting for 10.3 percent of query execution time. This picture
changes at high load. While the front-end still contributes consider-
ably to latency, overall performance is now also limited by the
back-end databases and the microservices that manage them
(ReviewStorage, MovieReview, UserReview, MongoDB). This shows
that bottlenecks shift across microservices as load increases, hence
resource management must be agile, dynamic, and able to leverage
tracing information to track how per-microservice latency changes
over time. Given this variability across microservices we now
examine where cycles are spent within individual microservices
and across the end-to-end application.

Cycles Breakdown and IPC. Fig. 5 shows the IPC and cycles break-
down for each microservice using Intel vTune [2], factoring in any
multiplexing in performance counter registers. A large fraction of
cycles, often the majority, is spent in the processor front-end.
Front-end stalls occur for several reasons, including backpressure
from long memory accesses. This is consistent with studies on tra-
ditional cloud applications [9], [13], although to a lesser extent for
microservices than for monolithic services (memcached, MongoDB),
given their smaller code footprint. The majority of front-end stalls
are due to data fetches, while branch mispredictions account for a
smaller fraction of stalls for microservices than for other interactive
applications, either cloud or IoT [9], [20]. Only a small fraction of
total cycles goes towards committing instructions, 22 percent on
average, denoting that current systems are poorly provisioned for
microservices-based applications. The same end-to-end service
built as a monolithic Java application providing the exact same
functionality, and running on a single node experiences signifi-
cantly reduced front-end stalls, due to the lack of network requests,
which translate to an improved IPC. Interestingly the cycles that go
towards misspeculation are increased in the monolith compared to
microservices, potentially due to its larger, more complex design,
which makes speculation less effective. We see a similar trend later
when looking at i-cache pressure (Fig. 10).

This analysis shows that each microservice experiences differ-
ent bottlenecks, which makes generally-applicable optimizations,
e.g., acceleration, challenging. The sheer number of different
microservices is also a roadblock for creating custom accelerators.
In order to find acceleration candidates we examine whether there
is common functionality across microservices, starting from the
fraction of execution time that happens at kernel versus user mode.

Tail latency (msec)

0 100 200 300 400
Queries per Second (QPS)

0 100 200 300 400
Queries per Second (QPS)

Memcached

mm OS
N User
100

I Libraries
I Other

Elo0 49

60

40

Percentage (%)

P10]40.9%

0 Instructions

Cycles

Fig. 6. Cycle and instructions breakdown to kernel, user, and libraries.

OS wversus user-Level Cycles Breakdown. Fig. 6 shows the break-
down of cycles and instructions to kernel, user, and libraries for
Movie Streaming. A large fraction of execution happens at kernel
mode, and an almost equal fraction goes towards libraries like libc,
libgee, libstde, and libpthread. The high number of cycles spent at
kernel mode is not surprising, given that applications like memc-
ached and MongoDB spend most of their execution time in the ker-
nel to handle interrupts, process TCP packets, and activate and
schedule idling interactive services [16]. The high number of
library cycles is also justified given that microservices optimize for
speed of development, and hence leverage a lot of existing librar-
ies, as opposed to reimplementing the functionality from scratch.

Computation: Communication Ratio. After the OS, the network
stack is a typical bottleneck of cloud applications [5]. Fig. 9 shows
the time spent in network processing compared to application
computation at low and high load for each microservice in Movie
Streaming. At low load, TCP corresponds to 5-70 percent of execu-
tion time. This is a result of many microservices being too short to
involve considerable processing, even at low load. At high load,
the time spent queued and processing network requests domi-
nates, with TCP processing bottlenecking the microservices
responsible for managing the back-end databases. Microservices
additionally shift the computation to communication ratio in cloud
applications significantly compared to monoliths. For example, the
same application built as a Java/JS monolith spends 18 percent of
time processing client network requests, as opposed to application
processing at low load, and 41 percent at high load. Despite the
increased pressure in the network fabric, microservices allow indi-
vidual components to scale independently, unlike monoliths,
improving elasticity, modularity, and abstraction. This can be seen
by the higher tail latency of the monolith at high load, despite the
multi-tier application’s complex dependencies.

Brawny versus Wimpy Cores. There has been a lot of work on
whether small servers can replace high-end platforms in the
cloud [11], [12]. Despite the power benefits of simple cores, how-
ever, interactive services still achieve better latency in machines
that optimize for single-thread performance. Microservices offer
an appealing target for small cores, given the limited amount of
computation per microservice. We evaluate low-power machines
in two ways. First, we use RAPL on our local cluster to reduce the
frequency at which all microservices run. Fig. 7 shows the change
in tail latency as load increases, and as the operating frequency
decreases for the end-to-end service. We compare these results
against four traditional monolithic cloud applications (nginx,
memcached, MongoDB, Xapian). As expected, most interactive
services are sensitive to frequency scaling. Among the monolithic
workloads, MongoDB is the only one that can tolerate almost

3

Nainx 1000, 1

. 1200] 1200)
N

£ 1400 102 1400
‘5:1500 1600)

& 1800 1800 1
%2000 10° 2000
£ 2200 2200
2400| 2400]

1

0 100 200 300 400
Queries per Second (QPS)

o
o
o

0 100 200 300 400
Queries per Second (QPS)

1000, MongoDB 10° 1000, Xapian
1200) 1200)
1400) 1400)
1600) 10° 4600
1800 1800)
2000 1ot 2000
2200 2200
2400 2400
)

10
10°

Tail latency (msec)

=
L

0 100 200 300 400
Queries per Second (QPS

Fig. 7. Tail latency with increasing input load (QPS) and decreasing frequency (using RAPL) for the end-to-end Movie Streaming service, and for four traditional, mono-

lithic cloud applications. The impact of reduced frequency is significantly more severe for Movie Streaming, as increased latency compounds across microservices.

158 IEEE COMPUTER ARCHITECTURE LETTERS, VOL.17, NO.2, JULY-DECEMBER 2018

Movie Streaming

- N W A O
o o & o o

Tail Latency (msec)

o

0 100 200 300 400 500
QPs

Fig. 8. Performance on a Xeon server at 2.6GHz (purple) and 1.8GHz (red), and on
ThunderX (blue).

12 Movie Streaming

I Application proc
I TCP proc (RPCs)

Tail Latency (msec)

Fig. 9. TCP versus application processing for movie streaming.

minimum frequency at maximum load, due to it being I/O-bound.
The other three monoliths start experiencing increased latency as
frequency drops, Xapian being the most sensitive [14], followed
by nginx, and memcached. Looking at the same study for Movie
Streaming reveals that, despite the higher tail latency of the end-to-
end service, microservices are much more sensitive to poor single-
thread performance than traditional cloud applications. Although
initially counterintuitive, this result is not surprising, given the fact
that each individual microservice must meet much stricter tail
latency constraints compared to an end-to-end monolith, putting
more pressure on performance predictability.

Apart from frequency scaling, there are also platforms designed
with low-power cores to begin with. We evaluate the end-to-end
service on two Cavium ThunderX boards (2 sockets, 48 1.8 GHz in-
order cores per socket, and a 16-way shared 16 M LLC). The boards
are connected on the same ToR switch as the rest of our cluster, and
their memory, network, and OS configurations are the same as the
other servers [7]. Fig. 8 shows the throughput-latency curves for the
two platforms. Although ThunderX is able to meet the end-to-end
QoS at low load, it saturates much earlier than the high-end servers.
We also show performance for Xeon at 1.8 GHz which, although
worse than the nominal frequency, still outperforms ThunderX by a
considerable amount. Low-power machines can still be used for
microservices out of the critical path, or insensitive to frequency
scaling by leveraging the per-microservice characterization above.

I-Cache Pressure. Prior work has quantified the high pressure
cloud services put on the instruction cache [9], [15]. Since microser-
vices decompose what would have been one large binary to many
loosely-connected services, we examine whether these results still
hold. Fig. 10 shows the MPKI of each microservice in Movie Stream-
ing. We also include the backend caching and database layers for
comparison. First, the i-cache pressure of nginx, memcached, and
MongoDB remains high, consistent with prior work. The i-cache
pressure of the remaining microservices is considerably lower,
which is expected given the microservices” small code footprints.
node. js applications outside the context of microservices do not
have low i-cache miss rates [20], hence we conclude that it is the
simplicity of microservices which results in better i-cache locality.
Most i-cache misses in Movie Streaming happen in the kernel, and
using vTune, are attributed to the Thrift framework. In compari-
son, the monolithic design experiences extremely high i-cache
misses, due to its large code footprint, and consistent with prior
studies of cloud applications [15]. We also examined the LLC and
D-TLB misses, and found them considerably lower than for tradi-
tional cloud applications, which is consistent with the push for
microservices to be mostly stateless.

5 CONCLUSIONS

In this paper we highlighted the implications microservices have on
system bottlenecks and datacenter server design. We used a new

70 Movie Streaming

o

L1i MPKI
co8885883
w1
np 1
(o —
—
(7| -
—
1
I
1
1
/70////7—\

&

3
0%
o
o,

Fig. 10. Per-microservice L1-i MPKI for movie streaming.

end-to-end movie reviewing and streaming service built with tens
of microservices to quantify the instruction-cache pressure micro-
services create, the trade-off between big and small servers, and the
shift they introduce in the ratio between computation and commu-
nication. As more cloud and IoT applications switch to this new
application model, it is increasingly important to revisit the assump-
tions cloud systems have been previously built and managed with.

REFERENCES

[11 “Apache thrift,” (2017). [Online]. Available: https://thrift.apache.org

[2] “Intel vtune amplifier,” (2018). [Online]. Available: https://software.intel.
com/en-us/intel-vtune-amplifier-xe

[3] J. Cloud, “Decomposing twitter:
architecture,” QConNY, 2013.

[4] A. Cockroft, “Microservices workshop: Why, what, and how to get there,”
in Microservices workshop all topics deck. (2017). [Online]. Available:
http://www slideshare.net/adriancockcroft/microservices-workshop-
craft-conference

[5] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “IX: A protected dataplane operating system for high through-
put and low latency,” in Proc. 11th USENIX Conf. Operating Syst. Des. Imple-
mentation, 2014, pp. 49-65.

[6] R.Bell, Y. Koren, and C. Volinsky, “The bellkor 2008 solution to the netflix
prize,” Technical report, AT&T Labs, 2007.

[71 S. Chen, S. Galon, C. Delimitrou, S. Manne, and J. F. Martinez, “Workload
characterization of interactive cloud services on big and small server
platforms,” in Proc. IEEE Int. Symp. Workload Characterization, Oct. 2017,
pp. 125-134.

[8] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56, no. 2,
pp. 74-80, 2013.

[91 M. Ferdman, A. Adileh, et al., “Clearing the clouds: A study of emerging
scale-out workloads on modern hardware,” in Proc. 17th Int. Conf. Architec-
tural Support Programming Languages Operating Syst., 2012, pp. 37-48.

[10] J. Hauswald, M. A. Laurenzano, Y. Zhang, et al., “Sirius: An open end-to-
end voice and vision personal assistant and its implications for future
warehouse scale computers,” in Proc. 20th Int. Conf. Architectural Support
Programming Languages Operating Syst., 2015, pp. 223-238.

[11] U. Holzle, “Brawny cores still beat wimpy cores, most of the time,” IEEE
Micro., vol. 30, no. 4, July /Aug. 2010.

[12] V. Janapa Reddi, B. C. Lee, et al., “Web search using mobile cores: Quanti-
fying and mitigating the price of efficiency,” in Proc. 37th Annu. Int. Symp.
Comput. Archit., 2010, pp. 314-325.

[13] S. Kanev, J. Darago, K. Hazelwood, P. Ranganathan, et al., “Profiling a
warehouse-scale computer,” in Proc. 42nd Annu. Int. Symp. Comput. Archit.,
2015, pp. 158-169.

[14] H. Kasture and D. Sanchez, “TailBench: A benchmark suite and evaluation
methodology for latency-critical applications,” in Proc. IEEE Int. Symp.
Workload Characterization, 2016, pp. 1-10.

[15] C.Kaynak, B. Grot, and B. Falsafi, “SHIFT: Shared history instruction fetch
for lean-core server processors,” in Proc. Proc. 46th Annu. IEEEJ/ACM Int.
Symp. Microarchitecture, 2013, pp. 272-283.

[16] J. Leverich and C. Kozyrakis, “Reconciling high server utilization and sub-
millisecond quality-of-service,” in Proc. 9th Eur. Conf. Comput. Syst. 2014,
Art. no. 4.

[17] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed
systems tracing infrastructure,” Google, Inc., 2010.

[18] T. Ueda, T. Nakaike, and M. Ohara, “Workload characterization for micro-
services,” in Proc. IEEE Int. Symp. Workload Characterization. 2016, pp. 1-10.

[19] L.Wang,J. Zhan, C. Luo, et al., “Bigdatabench: A big data benchmark suite
from internet services,” in Proc. IEEE 20th Int. Symp. High Perform. Comput.
Archit., 2014, pp. 488-499.

[20] Y. Zhu, D. Richins, M. Halpern, and V. J. Reddi, “Microarchitectural impli-
cations of event-driven server-side web applications,” in Proc. 48th Annu.
IEEE/ACM Int. Symp. Microarchitecture, 2015, pp. 762-774.

Adventures in service-oriented

https://thrift.apache.org
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

