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Abstract

Performance unpredictability in cloud services leads to
poor user experience, degraded availability, and has rev-
enue ramifications. Detecting performance degradation
a posteriori helps the system take corrective action, but
does not avoid the QoS violations. Detecting QoS vi-
olations after the fact is even more detrimental when
a service consists of hundreds of thousands of loosely-
coupled microservices, since performance hiccups can
quickly propagate across the dependency graph of mi-
croservices. In this work we focus on anticipating QoS
violations in cloud settings to mitigate performance un-
predictability to begin with. We propose Seer, a cloud
runtime that leverages the massive amount of tracing data
cloud systems collect over time and a set of practical
learning techniques to signal upcoming QoS violations,
as well as identify the microservice(s) causing them.
Once an imminent QoS violation is detected Seer uses
machine-level hardware events to determine the cause of
the QoS violation, and adjusts the resource allocations to
prevent it. In local clusters with 10 40-core servers and
200-instance clusters on GCE running diverse cloud mi-
croservices, we show that Seer correctly anticipates QoS
violations 91% of the time, and attributes the violation to
the correct microservice in 89% of cases. Finally, Seer
detects QoS violations early enough for a corrective ac-
tion to almost always be applied successfully.

1 Introduction

Cloud computing services are governed by strict quality
of service (QoS) constraints in terms of throughput, and
more critically tail latency [8, 12, 14, 15]. Violating these
requirements worsens the end user experience, leads to
loss of availability and reliability, and has severe rev-
enue implications [7, 8,12, 17,18]. A recent shift from
monolithic designs to loosely-coupled microservices is
aimed at improving service deployment, isolation, and
modularity, but at the same time puts more pressure on
performance predictability, as the latency requirements
of each individual microservice is often in the microsec-
ond granularity. Similarly, as datacenter servers become
increasingly heterogeneous with the addition of FPGAs,
hardware accelerators, and network offload engines, per-
formance predictability becomes even more challenging.

The need for performance predictability has prompted
a long line of work on performance tracing, monitor-
ing, and debugging systems [11,22,28,29,32,33]. Sys-
tems like Dapper and GWP rely on distributed tracing
(often at RPC level) to detect performance abnormali-
ties, while the Mystery Machine [11] leverages the large
amount of logged data to extract the causal relationships
between messages, and sidestep the challenge of clock
synchronization across large clusters. This dependency
model between requests can then be used towards perfor-
mance optimizations, such as incremental result propa-
gation that leverages the latency slack of certain requests.

In this work we take performance debugging one step
further. Specifically, detecting QoS violations after the
fact, although useful to amend prolonged degraded per-
formance caused by events like misconfigurations and
machine failures, still incurs the poor user experience
and revenue implications discussed above. Even more,
the longer the system operates oversubscribed, the longer
it takes for corrective actions to take effect and restore
QoS. This is especially true when applications consist of
microservices where backpressure effects between appli-
cation tiers can cause bottlenecks to propagate and am-
plify through the system. In microservices-based appli-
cations, performance debugging also has the additional
challenge of pinpointing the culprit of a QoS violation,
a non-trivial task given the complexity of dependencies
between microservices in production systems.

Given the consequences of QoS violations, we set out
to answer the following questions: (i) can QoS violations
be anticipated in cloud systems that host microservices-
based applications, and (ii) can we pinpoint which mi-
croservice is the culprit of an upcoming QoS violation
early enough to take corrective action?

Initially, anticipating performance degradations seems
infeasible given that the vast majority of QoS viola-
tions are caused by unpredictable, short-term transient
effects [30]. An aid in this attempt is the massive amount
of data cloud systems collect about the execution of ser-
vices they host over time. By mining this information in
a practical, online manner we can detect QoS violations
just early enough to avoid them altogether by taking ac-
tions, such as adjusting resource allocations.

We present Seer, a cloud monitoring and performance
debugging system that leverages deep learning to diag-



nose and prevent QoS violations in a practical and on-
line manner. The NN in Seer is trained offline on anno-
tated, RPC-level execution traces collected using Apache
Thrift’s timing interface [1]. At runtime, Seer takes
streaming traces as input, and outputs the microservice
(if any) that will cause a QoS violation in the near fu-
ture. Traces capture the queue depth in front of each
microservice at fine-grained intervals; we also experi-
mented with latency and utilization traces and show that
unlike queue depths, they do not correlate closely with
performance. While inference is fast for small clusters,
as systems scale inference time does to. To speedup per-
formance debugging at scale, we offloaded inference on
Google’s TPU cloud, which accelerated inference by al-
most two orders of magnitude. The current design con-
verges within 5-10ms for a neural network with several
hundred input and output neurons, and 5 hidden layers.

We evaluate Seer both in our local cluster of 10 40-
core machines, and on a 200-instance cluster on Google
Compute Engine. In our local cluster Seer correctly iden-
tifies upcoming QoS violations in 93% of cases, and cor-
rectly pinpoints the microservice initiating the QoS vio-
lation 89% of the time. In the GCE cluster, it correctly
detects QoS violations 90% of the time, and correctly
identifies the culprit in 86% of cases. For the cases where
QoS violations are anticipated correctly, Seer is able to
adjust resource allocations to prevent them altogether in
most cases. As cloud systems become increasingly com-
plex, systems like Seer that take a data-driven approach
can make their management more practical. We are cur-
rently working to make the system more scalable and
robust to server heterogeneity, missing or noisy input
traces, and techniques like autoscaling.

2  The Design of Seer

2.1 Distributed Tracing

A major challenge with microservices is that one can-
not simply rely on the client to report performance as
with traditional client-server applications. We devel-
oped a distributed tracing system that records latencies at
RPC granularity using the Thrift timing interface. RPCs
and REST requests are timestamped upon arrival and
departure from each microservice by the tracing mod-
ule, and data is aggregated in a centralized Cassandra
database. The design of the tracing system is similar
to Zipkin [6]. We additionally track the number of re-
quests queued in each microservice, and distinguish be-
tween the time spent processing network requests and the
time that goes towards application computation. In all
cases the overhead from tracing is negligible, less than
0.1% on end-to-end latency, which is tolerable for such
systems [11,28,29].
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Figure 1: The neural network design in Seer.
2.2 Learning in Performance Debugging

A popular way to model performance in cloud systems,
especially when there are dependencies between tasks,
are queueing networks. Although queueing networks
are a valuable tool to model how bottlenecks propagate
through the system, they require in-depth knowledge of
application structure, and can become overly complex as
applications and systems scale. They additionally can-
not easily capture all sources of contention such as the
operating system and network stack.

Instead in Seer, we take a data-driven approach that
assumes no a priori knowledge on the architecture of a
service, making the system robust to changing and un-
known applications. The key idea is that conditions that
led to QoS violations in the past can be used to antic-
ipate QoS violations in the near future. A deep neu-
ral network is trained on the distributed traces collected
using the monitoring system above to anticipate future
QoS violations. There are two main factors that impact
the network’s accuracy; the metric that is used as in-
put, and the configuration of the network’s neurons and
layers. We experimented with resource utilization, la-
tency, and queue depths as input metrics. Consistent
with prior work, utilization was not a good proxy for
performance [14, 17,25,26]. Similarly latency led to a
large number of false positives, or incorrectly signaled
computationally-intensive microservices as the QoS vi-
olation culprits. Again consistent with queueing the-
ory [24] and prior work [16,19,23,25], per-microservice
queue depths consistently captured performance bottle-
necks and pinpointed the microservices causing them.

The second challenge, tuning the configuration param-
eters in the network (learning rate a, hidden layers, batch
size, hidden units per layer) is done empirically. Figure 1
shows the neural network in Seer. The number of input
and output neurons is equal to the number of active mi-
croservices in the cluster, with each input neuron captur-



Service Protocol

Per-language LoC breakdown of end-to-end service

Social network RPC

34% C, 23% C++, 18% Java, 7% node.js, 6% Python, 5% Scala, 3% PHP, 2% Javascript, 2% Go

Movie streaming RPC

30% C, 21% C++, 20% Java, 10% PHP, 8% Scala, 5% node.js, 3% Python, 3% Javascript

E-commerce REST

21% Java, 16% C++, 15% C, 14% Go, 10% Javascript, 7% node, 5% C#, 5% Scala, 4% HTML, 3% Ruby

Table 1: Code composition of each end-to-end service.

ing the queue depth of the corresponding microservice,
and each output neuron firing if/when that microservice
is about to initiate a QoS violation in the near future.
All microservices in our setting run in single-concerned
Docker containers, i.e., only a single microservice runs
per container. This simplifies scaling up/out individual
microservices independently. In Section 5 we discuss
the implications of the number of active microservices
changing as a result of techniques like autoscaling. The
learning rate a is configured using ADAGRAD [20], keep-
ing the number of neurons constant. We then explore
the impact of the number of hidden layers and units per
hidden layer on output quality. The five hidden layers
shown in Fig. 1 maximize the detection accuracy across
a diverse set of application and system configurations,
disjoint from the trace set the network is trained on (see
Validation section below). Weights and biases are ob-
tained via Stochastic Gradient Descent (SGD) [9, 31].

Training process: Seer is trained on execution traces
collected from all active microservices over time. Train-
ing happens offline, and only needs to be repeated when
the server configurations or the type of active microser-
vices change substantially. Traces from multiple servers
are synchronized, and include requests queued per mi-
croservice over time. Training traces include annotated
QoS violations; for now annotation is supervised manu-
ally, however we are exploring ways to completely auto-
mate the annotation process.

Inference process: During normal operation, execution
traces are streamed through the network every few mil-
liseconds and potential upcoming QoS violations are sig-
naled. Once an imminent QoS violation is detected, Seer
takes action by first determining why the microservice
is misbehaving, and then adjusting the resource alloca-
tion of the offending microservice to mitigate the unpre-
dictable performance. In Section 4 we show an example
of system behavior with and without Seer’s intervention.

Why deep learning?  Although deep learning is not
the only approach that can be used for proactive QoS
violation detection, there are several reasons why it is
preferable in this case. First, the problem Seer must solve
is a pattern matching problem of recognizing queueing
patterns between microservices that result in QoS viola-
tions, where the patterns are not always known or easy
to annotate. This is a more complicated task than sim-
ply signaling a microservice with many enqueued re-
quests, for which simpler classification, regression, or
sequence labeling techniques would suffice. Second, the
DNN in Seer assumes no a priori knowledge about the

structure and dependencies between individual microser-
vices, making it applicable for services where the appli-
cation architecture changes frequently, is overly complex
for users to manually express dependencies, or for pub-
lic cloud settings where the cloud provider does not have
access to the application source code. Third, deep learn-
ing has been shown to be especially effective in pattern
recognition problems with massive datasets, e.g., in im-
age or text recognition. Finally, as we show in the vali-
dation section below, using deep learning allows Seer to
recognize QoS violations with high accuracy, and within
the opportunity window the resource manager needs to
apply corrective actions.

3 Validation

3.1 Methodology

Applications:  Although there are many open-source
microservices that could serve as individual components
of an end-to-end service, there are no representative end-
to-end applications built with microservices, with the ex-
ception of Sockshop, an e-commerce site by Weave [5].
To address this we have developed three end-to-end ser-
vices which we plan to open-source, each consisting
of tens of different microservices, and implementing
a social network, a movie reviewing/streaming service,
and an e-commence site based on Sockshop. Individ-
ual microservices include nginx [4], memcached [21],
mongodb [3], RabbitMQ [2], and http server, among
others. Table 1 shows a breakdown of each end-to-
end service per language, which highlights the soft-
ware heterogeneity that is often present in microservices.
We additionally built an RPC framework over Apache
Thrift [1] to connect individual microservices in the so-
cial network and movie streaming service. Microservices
in the e-commerce site are connected over http.
Systems: First, we use a dedicated local cluster with
10, 2-socket 40-core servers with 128GB of RAM each.
Each server is connected to a 40Gbps ToR switch over
10Gbe NICs. Second, we use a 200-instance cluster on
Google Compute Engine (GCE) to study the scalability
of Seer. All instances are nl-standard-64, each with
64 vCPUs and 240GB of RAM.

3.2 Evaluation

Accuracy: Fig. 2a shows the detection accuracy in Seer
under different input metrics. CPU utilization and per-
microservice latencies miss the majority of QoS viola-
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Figure 2: (a) The accuracy of detecting upcoming QoS violations when using different metrics as inputs of the neural
network. (b) The time it takes for inference to converge in Seer, for the small-scale 10 server cluster. (c) The false
negatives and false positives in Seer as we vary the prediction window.
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Figure 3: (a) The accuracy of QoS violation detection

is Seer as the cluster size increases, and (b) The CDF
of convergence time with our local implementation, and
using the Google TPU Cloud for the 200-instance cluster.

tions and mislabel the microservices initiating the viola-
tions. Using the rate at which per-microservice latency
changes achieves higher accuracy but still misses a sig-
nificant fraction of QoS violations, and incorrectly labels
a disproportionate fraction of microservices as culprits.
Using the per-microservice queue depth as the input of
the neural network captures the majority of QoS viola-
tions, and pinpoints the responsible microservice(s).

Inference time: Fig. 2b shows the convergence time for
inference in the small 10-server cluster. For 60% of QoS
violations, detection happens within 2ms from obtaining
the per-microservice traces, early enough to apply most
corrective actions that avoid the QoS violation altogether.
Even the QoS violations in the high percentiles of the
CDF are detected within 14ms at most, which is usually
sufficient for the system to react.

False negatives & positives: Fig. 2c shows the percent-
age of false negatives and false positives in Seer as we
vary the prediction window. When the prediction win-
dow is 10-100ms both false positives and false negatives
are low, as Seer uses a very recent snapshot of the cluster
state to anticipate performance unpredictability. If infer-
ence was instantaneous, very short prediction windows
would always be better, as they reflect the current state
of the cluster. However, given that inference takes sev-
eral milliseconds and more importantly, applying correc-
tive actions to avoid QoS violations takes several tens
of milliseconds to take effect, such short windows defy
the point of proactive QoS violation detection. At the

other end, predicting far into the future results in sig-
nificant false negatives, and especially false positives.
This is because many QoS violations are caused by very
short, bursty events that do not have an impact on queue
lengths until a few milliseconds before the violation oc-
curs. Therefore requiring Seer to predict one or more
seconds into the future means that normal queue depths
are annotated as QoS violations, resulting in many false
positives. Unless otherwise specified we use a 100ms
prediction window for the remainder of the paper.
Scalability: We now examine Seer as the cluster size
increases. Fig. 3a shows QoS detection accuracy for dif-
ferent cluster sizes; the 1 and 10 server settings are local,
while the 40- and 200-instance clusters are on GCE. Seer
is robust to the size of the cluster in terms of detection ac-
curacy, although as seen in Fig. 3b for the 200-instance
cluster, the penalty of scalability comes in terms of in-
ference time. For the majority of cases inference takes
several hundreds of ms, at which point the QoS violation
has occurred. To address this we rewrote Seer using Ten-
sorflow and ported it on the Google TPU public cloud.
The change in inference time is dramatic, two orders of
magnitude in some cases, ensuring that detection hap-
pens early enough to be meaningful.

4 QoS Violation Prevention

Once an upcoming QoS violation is detected, Seer takes
action to try to avoid it. This involves first determin-
ing what will cause the QoS violation before it mani-
fests as an increase in tail latency. To do so Seer looks
at hardware-level per-resource utilization statistics on
the machine where the offending microservice resides.
This includes CPU utilization, memory, network, and
I/0 bandwidth usage, and last level cache misses. Al-
though this is not an exhaustive list of resources where
contention can emerge, in practice it covers a large frac-
tion of performance degradations.

Once the problematic resource is located, Seer adjusts
the resource allocation, either resizing the Docker con-
tainer, or using mechanisms like Intel’s Cache Alloca-
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Figure 4: Tail latency with and without Seer.

tion Technology (CAT) for last level cache (LLC) parti-
tioning, and the Linux traffic control’s hierarchical token
bucket (HTB) queueing discipline in qdisc [10,27] for
network bandwidth partitioning.

Fig. 4 shows the impact on tail latency with and with-
out Seer. Once the upcoming QoS violation is detected
Seer determines the problematic resource, in this case
insufficient LLC capacity, and uses CAT to adjust it.
Post detection the service’s tail latency with Seer remains
nominal, while if the QoS violation had remained un-
detected tail latency would continue to worsen until re-
quests started getting dropped. Note that once the system
arrives in such a problematic state it, returning to normal
operation has significant inertia.

Some of the measurements Seer uses for detect prob-
lematic resources involve access to hardware perfor-
mance counters. Unfortunately public clouds do not
enable access to such events. In that case, Seer uses
a set of contentious microbenchmarks, each targeting
a different system resource to pinpoint problematic re-
sources [13]. For example, a cache thrashing mi-
crobenchmark will reveal cache saturation, while a net-
work bandwidth-demanding microbenchmark will reveal
insufficient bandwidth allocations. These microbench-
marks need to run for a few 10s of milliseconds before
signaling the resource under contention.

5 Discussion

Seer is currently used by several groups at Cornell and
elsewhere. Nonetheless, the present design has a num-
ber of limitations, which we are currently addressing.
First, because the number of input and output neurons in
Seer is equal to the number of active microservices, the
system needs to be retrained if techniques like autoscale
which spawn additional containers, or terminate existing
containers are present. The same applies when the archi-
tecture of the end-to-end application changes, e.g., when
more applications are decomposed to microservices, or
new features are added to the service. Currently we use
a shadow DNN, retrained in the background to adjust to
changes in the application architecture. While retrain-
ing happens, Seer uses the primary network to anticipate
QoS violations, which may lead to undetected unpre-

dictable performance. We are exploring more practical
ways to make the network robust to application changes.

Second, Seer currently assumes no knowledge about
the structure of the end-to-end service. We are exploring
whether users expressing the application architecture, or
the system learning it via the tracing system can improve
the accuracy and/or scalability of Seer.

Third, Seer assumes full control over the cluster, or
at least over individual servers, such that it can collect
traces from all active microservices. This may not al-
ways be the case, especially in public clouds, or when
using third-party applications that cannot easily be in-
strumented. We are extending the system design to toler-
ate missing or noisy tracing information.

Finally, even though Seer is able to avert the major-
ity of QoS violations, there are still some events that are
not predicted early enough for corrective actions to take
place. These typically involve memory-bound microser-
vices, where the memory subsystem is saturated. Mem-
ory, like any storage medium, has inertia, so resource ad-
justment decisions require more time to take effect. We
are exploring whether predicting further into the future
is possible without significantly increasing the number
of false positives, or whether alternative resource isola-
tion mechanisms like cache partitioning can help allevi-
ate memory pressure faster.

6 Future Work

Cloud systems and applications continuously increase
in size and complexity. The recent switch from mono-
liths to microservices puts even more pressure on perfor-
mance predictability, and at the same time makes man-
ual performance debugging impractical. In this paper we
presented early work on Seer, a monitoring and perfor-
mance debugging runtime that leverages practical learn-
ing techniques and the massive amount of tracing data
cloud systems collect, to proactively detect QoS viola-
tions with enough slack to prevent them altogether. We
have evaluated Seer both on local clusters and a large
cluster on GCE, and validated its accuracy in anticipating
QoS violations and pinpointing the microservices that
cause them. As cloud and IoT applications continue to
shift from batch to low-latency, systems like Seer can
improve their QoS, predictability, and responsiveness in
a practical and online manner.
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