¢

SN

%<

.

Seer: Leveraging Big Data to Navigate The
Increasing Complexity of Cloud Debugging

Yu Gan, Meghna Pancholi, Dailun Cheng,
Siyuvan Hu, Yuan He and Christina Delimitrou

Cornell University

- HotCloud~ July 9* 2018

e
: Sreiem
Executive Summary e

Microservices puts more pressure on performance predictability
Microservices dependencies =2 propagate & amplify QoS violations
Finding the culprit of a QoS violation is difficult

Post-QoS violation, returning to nominal operation is hard
Anticipating QoS violations & identifying culprits

Seer: Data-driven Performance Debugging for Microservices

Combines lightweight RPC-level distributed tracing with hardware
monitoring

Leverages scalable deep learning to signal QoS violations with
enough slack to apply corrective action

From Monoliths to Microservices

PASSENGER

=

MyYsQL

Monolithic
Architecture

MYSQL
ADAPTER

v TWILIO
AL Q ADAPTER
PASSENGER
MANAGEMENT
SRS
BILLING NOTIFICATION PAYMENTS
TRIP DRIVER
MANAGEMENT MANAGEMENT
SENDGRID
V{.EIB ADAPTER

[P STRIPE
ADAPTER

API
GATEWAY

PASSENGER
WEB UI

DRIVER
WEB UI

PASSENGER
MANAGEMENT

DRIVER
MANAGEMENT (™)

TRIP
MANAGEMENT

REST
API

BILLING

REST
API

PAYMENTS
REST
API
NOTIFICATION
SENDGRID

ADAPTER

TWILIO
ADAPTER

Motivation

Advantages of microservices:
Ease & speed of code development & deployment
Security, error isolation

PL/framework heterogeneity

Challenges of microservices:
Change server design assumptions
Complicate resource management = dependencies
Amplify tail-at-scale effects
More sensitive to performance unpredictability

No representative end-to-end apps with microservices

An End-to-End Suite for Cloud & loT Microservices

4 end-to-end applications using popular open-source
microservices =2 ~30-40 microservices per app

Social Network
Movie Reviewing/Renting/Streaming
E-commerce

Drone control service

Programming languages and frameworks:
node.js, Python, C/C++, Java/Javascript, Scala, PHP, and Go
Nginx, memcached, MongoDB, CockroachDB, Mahout, Xapian
Apache Thrift RPC, RESTful APIs
Docker containers

Lightweight RPC-level distributed tracing

Resource Management Implications

Twitter Amazon Movie Streaming
1 Challenges of microservices:

0 Dependencies complicate resource management

0 Dependencies change over time =2 difficult for users to express

0 Amplify tail@scale effects

The Need for Proactive Performance Debugging

Detecting QoS violations after they occur:
Unpredictable performance propagates through system
Long time until return to nominal operation

Does not scale

10NS

Owen (O

mplicat

(Ocpu

‘ Queue

Performance |

Ve @ v @ N @@ v &t vt @y @ @@ e
Ce ' O €v v« @& E+ v e v €+ v @ @ v

=

« @¢

c.
(;

o B
e v v v v @r g @ v @¢-r v
2@+ ¢ v v @+ «w @@+ v @y v v owon @v @

- v @€ ¢ € P @ E v & v @
LN

R L N LTI
v @eEr v e v @ o

)

v

w

F\\

[

O

8 @+ v v v ow o

Cr e € r e r S v e Er v g

© f.\ " w (f.\\ @ A " fv\\ “ b © " " ﬁu\v w f % (w v @ f\\ A

Gr ¢ G E: ¢« & v ¢+ « @ v G

v @ e @ et Oy v v S8 ¢

Ce v @ v @@+ v v v v v v @ @ @
Ce' @ €v v @ E: ¢« Yr v @+ @ @G-

v s e @ @ €8 @ @ S

< f/k, vy e v @ orow 2@ v @ v v v v @

vo@w o e v €@ v @er @

W @ " L W W w ¢ e

AT YR Y K

' ®T66
@67 G OC 6"

.
L=
€ @er @y Ev v S8 v & v @y
e @
W

g+ ¢« & v @
@ s @er @y Ee O 8 Er v &
@+ v v v v v @ e @ v @t
v @EeEr v & @8 @@ v G
e v € v 8o Y Yo v 8 E v &
€ v &€& v Yu v v @ @@ ey S

Ce @ v v L EY ¢« Y v @ G v G
¥
(O
e
<
@
W
L=

TORN v @ @ € Sut @ e v @@ @
' ¢ &r v @ W 8@ v &t vk s @ @@
- v Qe P €v v e Er v Pr v @ v @ @
G v e v v v @ e @ v @¢r Py &y v @
C@8eEY v & v @ w g v @y e v @ @

@ v @8 G Ev @ Er v v @ o

) i & P
SO v @ v e v @ @ @ v vy O @
v Ce v @ EY v g v @ v @@ v @ v oo

Cr e € v e Oy Se v e Er v o

e @ o w @@y v @ v ey @ e 8 e @t
.t Yy v @ E: v & v @ v @@ v @ o1

~

e e @ e 8 @t @ v v Q8 @ &

OCPU ONet ODisk

Performance Implications

Seer: Data-Driven Performance Debugging

Leverage the massive amount of traces collected over time

Apply online, practical data mining techniques that
identify the culprit of an upcoming QoS violation

Use per-server hardware monitoring to determine the
cause of the QoS violation

Take corrective action to prevent the QoS violation from
occurring

Need to predict 100s of msec — a few sec in the future

10

Tracing Frqmeworm

RPC level tracing
Based on Apache Thrift

Timestamp start-end
for each microservice

Store in centralized DB
(Cassandra)

Record all requests =
No sampling

Overhead: <0.1% in
throughput and <0.2%
in tail latency

Gantt charts

Q

Ol

> |

| - [

q) |

(7)) .

O |

L b

O —
hittp =

latency
...................... s ———
[WebUI]

Cassandra 2 App proc

¥ TcP procrx
A PC tlmeTX
Tracing RPC timex

Collector | - 3

zTracer p

uService K+ ‘

11

Deep Learning to

Why?
Architecture-agnostic

Adjusts to changes in
dependencies over
time

High accuracy, good
scalability

Inference within the
required window

#Microservices

the Rescue

Hidden Layers

S2JIAISSOINH

12

DNN Configuration

Input
signal

Container
utilization

Latency

Queve
depth

#Mlicroservices

Hidden Layers

Ouvtput
signal

Which
microservice
will cause a

QoS violation
in the near
future?

SI3IINISSONINH

13

DNN Configuration

Input
signal

1 Container
utilization

1 Latency

0 Queue
depth

#Mlicroservices

Hidden Layers

Ouvtput
signal

Which
microservice
will cause a

QoS violation
in the near
future?

S9JIAISSOINH

14

DNN Configuration

Training once: slow (hours - days)

Across load levels, load distributions, request types

Distributed queue traces, annotated with QoS violations
Weight /bias inference with SGD

Retraining in the background

Inference continuously: streaming trace data

50
/93% accuracy in signaling upcoming\
QoS violations
?1% accuracy in attributing QoS

_ violation to correct microservice

N 1Oms@ 100msC—] 1s
[50ms[@ 500msC—1 2s

N
=)

[
=)

no
=)

Percentage (%)

—
o

J

False Negatives False Positives

15

DNN Configuration

® 100 1_0{ Large scale
- P B B B | |
g 89 08 e :
g 60 w06 . ’
S 4ol [
S O 04
£ 20l : Local
g 0.2 — TPUs
o 97« S oS 0.0

@ AR 0 200 400 600 80010001200

.\56 53(\‘ 6\3’ 6\3'(\ I f T
S %00\ nference Time (msec)

[Accuracy stable or increasing with cluster size]

Challenges:

In large clusters inference too slow to prevent QoS violations

Offload on TPUs, 10-100x improvement; 10ms for 90" %ile
inference

Fast enough for most corrective actions to take effect (net bw
partitioning, RAPL, cache partitioning, scale-up /out, etc.) 16

Experimental Setup
—

11 40 dedicated servers

71 ~1000 single-concerned
containers

1 Machine utilization 80-85%

0 Inject interference to cause
QoS violation

o1 Using microbenchmarks

(CPU, cache, memory,
network, disk | /O)

17

Restoring QoS

|dentify cause of QoS violation
Private cluster: performance counters & utilization monitors

Public cluster: contentious microbenchmarks

Adjust resource allocation
RAPL (fine-grain DVFS) & scale-up for CPU contention
Cache partitioning (CAT) for cache contention
Memory capacity partitioning for memory contention
Network bandwidth partitioning (HTB) for net contention
Storage bandwidth partitioning for |/O contention

18

Restoring QoS

g 103 - R?c‘q ‘I;)'rops
2. Seer : \

£ _ !

10 - Baseline | :

> c!

3] S,

S . 1 2

— 10 S o

3 ."(3‘9":4'-"*-—.r‘r.-q.-,,-.r-wgg:-;&'l-------_
T 2 A0
=102 4 % 8 10

Time (sec)
Post-detection, baseline system = dropped requests

Post-detection, Seer = maintain nominal performance

Demo OCPU ONet ODisk

Seer Default
/f€¢aﬁ’7<¢zﬁe'=
FEEEC TTEOGC
CC"@CC CC” @CC
/f‘(‘f(’c‘/;‘ /;(Cf(ee
7z = 2 7 7z = 2 7

A\
A
-\

\

\

W

A\
)\
7\

W

\

WO

20

Demo

21

Challenges Ahead

i fission

loT swarms

ecurity implications of data-driven approaches

0 Fall-back mechanisms when ML goes wrong

o1 Not a single-layer solution = Predictability needs vertical approaches

Thank youl

22

