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Executive Summary e

Microservices puts more pressure on performance predictability
Microservices dependencies =2 propagate & amplify QoS violations
Finding the culprit of a QoS violation is difficult

Post-QoS violation, returning to nominal operation is hard
Anticipating QoS violations & identifying culprits

Seer: Data-driven Performance Debugging for Microservices

Combines lightweight RPC-level distributed tracing with hardware
monitoring

Leverages scalable deep learning to signal QoS violations with
enough slack to apply corrective action



From Monoliths to Microservices
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Motivation

Advantages of microservices:
Ease & speed of code development & deployment
Security, error isolation

PL/framework heterogeneity

Challenges of microservices:
Change server design assumptions
Complicate resource management = dependencies
Amplify tail-at-scale effects
More sensitive to performance unpredictability

No representative end-to-end apps with microservices



An End-to-End Suite for Cloud & loT Microservices

4 end-to-end applications using popular open-source
microservices =2 ~30-40 microservices per app

Social Network
Movie Reviewing/Renting/Streaming
E-commerce

Drone control service

Programming languages and frameworks:
node.js, Python, C/C++, Java/Javascript, Scala, PHP, and Go
Nginx, memcached, MongoDB, CockroachDB, Mahout, Xapian
Apache Thrift RPC, RESTful APIs
Docker containers

Lightweight RPC-level distributed tracing



Resource Management Implications

Twitter Amazon Movie Streaming
1 Challenges of microservices:

0 Dependencies complicate resource management

0 Dependencies change over time =2 difficult for users to express

0 Amplify tail@scale effects



The Need for Proactive Performance Debugging

Detecting QoS violations after they occur:
Unpredictable performance propagates through system
Long time until return to nominal operation

Does not scale
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Performance Implications



Seer: Data-Driven Performance Debugging

Leverage the massive amount of traces collected over time

Apply online, practical data mining techniques that
identify the culprit of an upcoming QoS violation

Use per-server hardware monitoring to determine the
cause of the QoS violation

Take corrective action to prevent the QoS violation from
occurring

Need to predict 100s of msec — a few sec in the future
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Tracing Frqmeworm

RPC level tracing
Based on Apache Thrift

Timestamp start-end
for each microservice

Store in centralized DB
(Cassandra)

Record all requests =
No sampling

Overhead: <0.1% in
throughput and <0.2%
in tail latency

Gantt charts
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Deep Learning to

Why?
Architecture-agnostic

Adjusts to changes in
dependencies over
time

High accuracy, good
scalability

Inference within the
required window

#Microservices

the Rescue

Hidden Layers

S2JIAISSOINH
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DNN Configuration

Input
signal

Container
utilization

Latency

Queve
depth

#Mlicroservices

Hidden Layers

Ouvtput
signal

Which
microservice
will cause a

QoS violation
in the near
future?
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DNN Configuration

Input
signal

1 Container
utilization

1 Latency

0 Queue
depth

#Mlicroservices

Hidden Layers

Ouvtput
signal

Which
microservice
will cause a

QoS violation
in the near
future?
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DNN Configuration

Training once: slow (hours - days)

Across load levels, load distributions, request types

Distributed queue traces, annotated with QoS violations
Weight /bias inference with SGD

Retraining in the background

Inference continuously: streaming trace data

50
/93% accuracy in signaling upcoming\
QoS violations
?1% accuracy in attributing QoS

_ violation to correct microservice
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DNN Configuration
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Challenges:

In large clusters inference too slow to prevent QoS violations

Offload on TPUs, 10-100x improvement; 10ms for 90" %ile
inference

Fast enough for most corrective actions to take effect (net bw
partitioning, RAPL, cache partitioning, scale-up /out, etc.) 16



Experimental Setup
—

11 40 dedicated servers

71 ~1000 single-concerned
containers

1 Machine utilization 80-85%

0 Inject interference to cause
QoS violation

o1 Using microbenchmarks

(CPU, cache, memory,
network, disk | /O)
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Restoring QoS

|dentify cause of QoS violation
Private cluster: performance counters & utilization monitors

Public cluster: contentious microbenchmarks

Adjust resource allocation
RAPL (fine-grain DVFS) & scale-up for CPU contention
Cache partitioning (CAT) for cache contention
Memory capacity partitioning for memory contention
Network bandwidth partitioning (HTB) for net contention
Storage bandwidth partitioning for |/O contention
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Restoring QoS
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Demo OCPU ONet ODisk
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Demo
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Challenges Ahead

i fission

loT swarms

ecurity implications of data-driven approaches

0 Fall-back mechanisms when ML goes wrong

o1 Not a single-layer solution = Predictability needs vertical approaches

Thank youl
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