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EXECUTIVE SUMMARY CS L.

* Cloud applications migrating from monoliths to microservices
* Monoliths: all functionality in a single service
* Microservices: many single-concerned, loosely-coupled services
* Modularity, specialization, faster development
 Datacenters designed for monoliths = microservices have different requirements

= An end-to-end benchmark suite for large-scale microservices

= Architectural and system implications
* Hardware design
* OS/networking overheads
* Cluster management
* Application & programming frameworks
* Tail at scale
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FROM MONOLITHS TO MICROSERVICES C S Iii!

= Monolithic applications
* Single binary with entire business logic

= Limitations
* Too complex for continuous development
* Obstacle to adopting new frameworks
* Poor scalability & elasticity
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FROM MONOLITHS TO MICROSERVICES C S Iii!

= Microservices
* Fine-grained, loosely-coupled, and single-
concerned
 Communicate with RPCs or RESTful APIs
" Pros
* Agile development
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Wigs (5> payments

* Better modularity & elasticity
* Testing and debugging in isolation
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= Cons
e Different hardware & software constraints

* Dependencies - complicate cluster
management
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FROM MONOLITHS TO MICROSERVICES
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MOTIVATION C S L.

= Explore implications of microservices across the system stack

5. Tail at scale
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- 1. Hardware design
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MOTIVATION CS L.

= Explore implications of microservices across the system stack

Need representative, end-to-end applications
built with microservices
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MOTIVATION C S L.

= Previous work in cloud benchmarking

+ CloudSuite [ASPLOS’12]

* Sirius [ASPLOS’15] , Focus either on monolithic applications or
» TailBench [[ISWC’17] applications with few tiers

» uSuite [IISWC'18] )

= DeathStarBench suite

 Focus on large-scale microservices that stress typical datacenter design
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DEATHSTARBENCH SUITE CS L.

= Design principles
* Representativeness

» Use of popular open-source applications and frameworks

» Service architecture following public documentation of real systems using
microservices
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DEATHSTARBENCH SUITE CS L.

= Design principles
* Representativeness

* End-to-end operation
» Full functionality using microservices
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DEATHSTARBENCH SUITE CS L.

= Design principles
* Representativeness
* End-to-end operation

* Heterogeneity
» Wide range of programming languages and microservices frameworks
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DEATHSTARBENCH SUITE CS L.

= Design principles
* Representativeness
* End-to-end operation
* Heterogeneity
* Modularity

» Single-concerned and loosely-coupled services
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DEATHSTARBENCH SUITE CS L.

= Design principles
* Representativeness
* End-to-end operation
* Heterogeneity
* Modularity

* Reconfigurability
» Easy to update or change components with minimal effort
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DEATHSTARBENCH SUITE CS L.

* 5 end-to-end applications, tens of unique microservices each
* Social Network
* Media Service
* E-Commerce Service
* Banking System
* Drone Coordination System
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DEATHSTARBENCH SUITE CS L.

» Social network
Frontend Logic Caching & Storage
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DEATHSTARBENCH SUITE C S

= Media service
Frontend Logic Caching & Storage
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DEATHSTARBENCH SUITE C S|

» E-commerce service
Frontend Logic Caching & Storage
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DEATHSTARBENCH SUITE CS L.

= Banking system

Frontend Logic

Caching & Storage
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DEATHSTARBENCH SUITE C S|

* Drone coordination system
Frontend Cloud Edge
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CASE STUDY: SOCIAL NETWORK

= User sign up/login

Frontend Logic Caching & Storage
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CASE STUDY: SOCIAL NETWORK Csﬁi

= Write posts

Frontend Logic Caching & Storage
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CASE STUDY: SOCIAL NETWORK Cstﬁi

= Read home timeline
Frontend Logic Caching & Storage
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CASE STUDY: SOCIAL NETWORK Cstﬁa

= Search
Frontend Logic Caching & Storage
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CASE STUDY: SOCIAL NETWORK CSL.E

» Recommendation
Frontend Logic Caching & Storage
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ARCHITECTURAL AND SYSTEM IMPLICATIONS C S L.

= Explore implications of microservices across the system stack

5. Tail at scale
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- 1. Hardware design
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HARDWARE DESIGN C s L.;

5. Tail at scale

- Brawny VS. WImpy cores 4, APplication and frameworks
* Microservices are more sensitive to performance 3. Cluster management
unpredictability than monoliths 2 OB/ Network avertieads
> 1. Hardware design
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HARDWARE DESIGN C SLii:

5. Tail at scale

. Brawny VS. Wlmpy cores 4. Application and frameworks

* Microservices are more sensitive to performance 3. Cluster management

unpredictability than monoliths 2. OS/Network overheads
1000 —S0cial Network Media Service
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HARDWARE DESIGN C Sl

5. Tail at scale

- Brawny VS. WImpy cores 4. Application and frameworks
* Microservices are more sensitive to performance 3. Cluster management
unpredictability than monolithic apps 2. OS/Network overheads
> 1. Hardware design

e Xeon vs Cavium servers

= Cycle breakdown of each microservice
 Smaller fraction of frontend stalls than monoliths

= J-cache pressure
* Lower I-cache pressure than monoliths
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OS/NETWORK OVERHEADS C S|

5. Tail at scale
- RPC Overheads 4. Application and frameworks
* A large fraction of time spent in network stack 3. Cluster management

> 2. OS/Network overheads

* FPGA network acceleration
* Offload TCP stack on FPGA
* 10 — 68x improvement on network processing latency

1. Hardware design

* 43% - 2.2x improvement on end-to-end latency
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CLUSTER MANAGEMENT CSIE:

5. Tail at scale

. Latency baCk'Pressure 4. APplication and frameworks

* Bottleneck services pressure upstreaming services » | 3. Cluster management
2. OS/Network overheads

 Cause: Imperfect pipelining :
» HTTP/TCP HoL blocking 1. Hardware design
» Limited number of worker threads/connections

Example: HTTP 1.1 HoL blocking
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CLUSTER MANAGEMENT C S 1

5. Tail at scale

. CaSGadlng QOS VlOlatlonS 4. Application and frameworks

* Hotspots propagating along the dependency graph » | 3.Cluster management
2. OS/Network overheads

 No obvious correlation to CPU utilization

1. Hardware design

* Difficulty in discovering the bottleneck and long time to
recover from QoS violations
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APPLICATION AND FRAMEWORKS C s I!;

= Serverless frameworks 5. Tail at scale
» | 4. Application and frameworks

* Compared long-running microservices on EC2 with short-
running microservices on AWS Lambda

3. Cluster management

2. OS/Network overheads
» Agile resource adjustments with diurnal load pattern 1 Hardware desi
gn

 Higher performance variability due to
» No control of lambda placement
» Communication through S3
» Loading of dependencies
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TAIL AT SCALE CSL.

= Impact of slow servers __» 5. Tailat Scale
* Larger cluster = larger impact of slow servers o Application and frameworks
* More severe tail latency increase compared to monoliths (3. Cluster management
2. OS/Network overheads

1. Hardware design
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CONCLUSIONS CS L.

* C(Cloud applications from monoliths to microservices
e Study implications of microservices across the system stack
e Open-source benchmark suite for cloud and IoT microservices

* Explored the implications of microservices
* More sensitive to performance unpredictability
 DPotential of hardware acceleration for networking
* Need for cluster managers that account for dependencies
o Tail at scale effects more prominent in microservices
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QUESTIONS? CS L.

* C(Cloud applications from monoliths to microservices
e Study implications of microservices across the system stack
e Open-source benchmark suite for cloud and IoT microservices

* Explored the implications of microservices
* More sensitive to performance unpredictability
 DPotential of hardware acceleration for networking
* Need for cluster managers that account for dependencies
o Tail at scale effects more prominent in microservices
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