A Cornell University
o Computer Systems Laboratory

AN OPEN-SOURCE BENCHMARK SUITE FOR MICROSERVICES AND
THEIR HARDWARE-SOFTWARE IMPLICATIONS FOR CLOUD AND
EDGE SYSTEMS

Yu Gan, Yanqgi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayantara Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna Pancholi,
Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon
Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla and Christina Delimitrou

Cornell University

ASPLOS 2019
Session Cloud I

EXECUTIVE SUMMARY CS L.

* Cloud applications migrating from monoliths to microservices
* Monoliths: all functionality in a single service
* Microservices: many single-concerned, loosely-coupled services
* Modularity, specialization, faster development
 Datacenters designed for monoliths = microservices have different requirements

= An end-to-end benchmark suite for large-scale microservices

= Architectural and system implications
* Hardware design
* OS/networking overheads
* Cluster management
* Application & programming frameworks
* Tail at scale

,J‘ . -
o/ I8 8]\ Cornell University

&/ Computer Systerﬁs Laboratory

FROM MONOLITHS TO MICROSERVICES C S Iii!

= Monolithic applications
* Single binary with entire business logic

= Limitations
* Too complex for continuous development
* Obstacle to adopting new frameworks
* Poor scalability & elasticity

I))
e

Monolith Application

7
B|Y\ Cornell University

5/ Computer Systerﬁs Laboratory

FROM MONOLITHS TO MICROSERVICES C S Iii!

= Microservices
* Fine-grained, loosely-coupled, and single-
concerned
 Communicate with RPCs or RESTful APIs
" Pros
* Agile development

-5

shipping

Wigs (5> payments

* Better modularity & elasticity
* Testing and debugging in isolation
IIIJ_ S

4 J
442D 7'JJ

= Cons
e Different hardware & software constraints

* Dependencies - complicate cluster
management

7
5/ [B 8]\ Cornell University

5/ Computer Systerﬁs Laboratory

CSI=

FROM MONOLITHS TO MICROSERVICES

ETFLIX

B IR
Y et ‘}‘“ . ") D !¢ %4
s ot
Rt WO (Y
e

- h
i | e

amazon.com

. 5 P

S

i

Cornell University
Computer Systems Laboratory

MOTIVATION C S L.

= Explore implications of microservices across the system stack

5. Tail at scale

f]
(. \ \
| 4 Application and frameworks
N o
|
L 3. Cluster management
—\ o
|
o 2. OS/Network overheads
—\ <
|
d [)

- 1. Hardware design

7
A Cornell University

5/ Computer Systems Laboratory

MOTIVATION CS L.

= Explore implications of microservices across the system stack

Need representative, end-to-end applications
built with microservices

5/ Computer Systerﬁs Laboratory

MOTIVATION C S L.

= Previous work in cloud benchmarking

+ CloudSuite [ASPLOS’12]

* Sirius [ASPLOS’15] , Focus either on monolithic applications or
» TailBench [[ISWC’17] applications with few tiers

» uSuite [IISWC'18])

= DeathStarBench suite

 Focus on large-scale microservices that stress typical datacenter design

7,
Bl Cornell University
5/ Computer Systems Laboratory

DEATHSTARBENCH SUITE CS L.

= Design principles
* Representativeness

» Use of popular open-source applications and frameworks

» Service architecture following public documentation of real systems using
microservices

7,
SI'Y) Cornell University

5/ Computer Systems Laboratory

DEATHSTARBENCH SUITE CS L.

= Design principles
* Representativeness

* End-to-end operation
» Full functionality using microservices

,J‘ . -
SIV\ Cornell University

5/ Computer Systems Laboratory

DEATHSTARBENCH SUITE CS L.

= Design principles
* Representativeness
* End-to-end operation

* Heterogeneity
» Wide range of programming languages and microservices frameworks

,J‘ . -
SI'Y) Cornell University

5/ Computer Systems Laboratory

DEATHSTARBENCH SUITE CS L.

= Design principles
* Representativeness
* End-to-end operation
* Heterogeneity
* Modularity

» Single-concerned and loosely-coupled services

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

DEATHSTARBENCH SUITE CS L.

= Design principles
* Representativeness
* End-to-end operation
* Heterogeneity
* Modularity

* Reconfigurability
» Easy to update or change components with minimal effort

7,
5/ [E81Y) Cornell University

5/ Computer Systems Laboratory

DEATHSTARBENCH SUITE CS L.

* 5 end-to-end applications, tens of unique microservices each
* Social Network
* Media Service
* E-Commerce Service
* Banking System
* Drone Coordination System

,J‘ . -
SI'Y) Cornell University

5/ Computer Systems Laboratory

DEATHSTARBENCH SUITE CS L.

» Social network
Frontend Logic Caching & Storage

uniqus 10 JEl Rezd (L) Userstorage

Post

URL Shorten " Search Memcached { MongoDB BEReletels
4' Read Home Lz Post m

User timeline

MongoDB storage

age e Timeline Storage
4=
" Timeline ‘m Home timeline
2

><—
=N Memoached
Text BaSW§ Compose User
storage

Image Store
!{Qm
2 -

Frontend
Z—

Balancer

Video Store N ' \\

Frontend ;RabbitMQ

—7

Soci?»‘mHome Viemecached § SIVIONgOD B B[y Fle[Xsi(e]e=Te[=

Recommender Graph Timeline
Viemcached §SIMongoD B Baile STl (o] =Te [}

4V o) ez Social graph
— storage

3\ Cornell University

Computer Systems Laboratory

DEATHSTARBENCH SUITE C S

= Media service
Frontend Logic Caching & Storage

Movie NFS

Ren.t =mmd Streaming
Movie Memcached

MongoDB

Movie ID Cg(rar\llri);;e MongoDB
Review Memcached | MongoDB

Text ‘

: Memcached MongoDB
o B oo _ MongoDB _
Balancer : Memcached MongoDB
~a Read Review : A
U Review

—
Memcached MongoDB

— ! iy
Compose Plot = Thumbnail pee— Memcached MongoDB
> 1 Memcached ;4 MongoDB

FeE Cast pd Photo gm Video
Memcached MongoDB

nique 1D

P Storage

7
A Cornell University

5/ Computer Systerﬁs Laboratory

DEATHSTARBENCH SUITE C S|

» E-commerce service
Frontend Logic Caching & Storage

Recommender Social Net
— g vomzcned
Authorization
- Memcached | MongoDB

Payment Transaction ID

‘/
g Account ol Memcached § MongoDB

Info

Y~y Memcached | MongoDB
Shlppmg I
W Cart Wishlist

cisi e o177
Balancer

Search Queue Order
Queue Memcached § MongoDB
Discounts jums

Catalogue Ra

7
\ Cornell University

y Computer Systems Laboratory

DEATHSTARBENCH SUITE CS L.

= Banking system

Frontend Logic

Caching & Storage

WealthMgmt t I t t
Customer nvestmen WealthMgmtDB

Info Account

OpenCreditCard N S Memcached § MongoDB
Customer P —
| OpenAccount ‘ Activity \\ Account Memcached | MongoDB
:)__. Load Node.js Authentication @ Transaction \\ Personal Memcached | MongoDB
Balancer L/ Posting \ Lending ,

Payments \\ Memcached | MongoDB

"}' Business ;

ACL' OfferBanners Lending 2 / OfferDB
NS

Gredit Garg

Ads / —1 BankinfoDB
Contact =
Mortgages

7
\ Cornell University

/ Computer Systems Laboratory

DEATHSTARBENCH SUITE C S|

* Drone coordination system
Frontend Cloud Edge

o\% Edge Router S

o |
X i
- N S
Balancer ’\ /
_,A‘AF‘
\’Q’A Image
!'\ Rfcognltlon Edge Swarm

Obstacle
Avoidance

A Cornell University
s Computer Systems Laboratory

CASE STUDY: SOCIAL NETWORK

= User sign up/login

Frontend Logic Caching & Storage

// e
o
-

Lo~
Balancer

Home timeline
storage

\ Cornell University

Computer Systems Laboratory

Memcached | SIVoNgoDE S BV (o] f=To[=]

Post storage

User timeline
storage

Social graph
storage

Image storage

Video storage

CASE STUDY: SOCIAL NETWORK Csﬁi

= Write posts

Frontend Logic Caching & Storage

Unique ID \elaeleibl=i] User storage

Memcached Post storage
URL Shorten e 2 J
-

Image Store = Post
Frontend P-yg Image Seey |
User timeline

% L Memcached I MongoDB .
 Client toac NGINX kmmp%e‘ User 2. J

Balancer -~ W4 g Timel imeli
Timeline . Home timeline
N Post > ' Redis storage
Video Store Video Social graph
< = - Memcached | MongoDB
Frontend \,\ \/'—/ o g storage

User Tag \
»/A Memeached | FMongoDEY MINELERIIEE
Social ;. mmll Write Home
Graph Timeline Memcached | -MongoDB ™ BAY/(s [Tl (e] f=Te[=]

Cornell University

Computer Systems Laboratory

CASE STUDY: SOCIAL NETWORK Cstﬁi

= Read home timeline
Frontend Logic Caching & Storage

User storage

Memcached |- MongoDB ™ el gsi(e] e[

Image Store e —— Post
Frontend Timeline Storage
User timeline

- Load storage
Balancer | = imel
: Home timeline
storage
Video Store Social graph
Frontend 3 storage

Memcached I EVIongoD BN Il [CRS (o] f=Te[=

Memcached \lereelpl=R] Video storage

Cornell University

Computer Systerﬁs Laboratory

CASE STUDY: SOCIAL NETWORK Cstﬁa

= Search
Frontend Logic Caching & Storage

User storage

User timeline

Load storage
Balancer .)
Home timeline
storage
Social graph
storage

Image storage

Video storage

Cornell University

Computer Systerﬁs Laboratory

CASE STUDY: SOCIAL NETWORK CSL.E

» Recommendation
Frontend Logic Caching & Storage

MongoDB User storage
/ Post storage
User timeline
Load ,, storage

Balancer Home timeline
storage

Social graph
Memcached § MongoDB
/’ S

Image storage

Social
Recommender Graph Video storage

Cornell University

Computer Systerﬁs Laboratory

ARCHITECTURAL AND SYSTEM IMPLICATIONS C S L.

= Explore implications of microservices across the system stack

5. Tail at scale

f]
(. \ \
| 4 Application and frameworks
N o
|
L 3. Cluster management
—\ o
|
o 2. OS/Network overheads
—\ <
|
d [)

- 1. Hardware design

7
s A Cornell University

5/ Computer Systems Laboratory

HARDWARE DESIGN C s L.;

5. Tail at scale

- Brawny VS. WImpy cores 4, APplication and frameworks
* Microservices are more sensitive to performance 3. Cluster management
unpredictability than monoliths 2 OB/ Network avertieads
> 1. Hardware design
1000 S0cial Network 1000 Monolith Social Network Memcached MongoDB o
x
ﬁ1200 ’|\T1200 (g
< 4600 2 -
3 ;1600 s é
§ 1800 % 1800 a ?)
g2000 8_2000 E’
(]
fisgect 2 2200 -
2400 2400 0 ' &
0 100 200 300 400 0 100 200 300 400 O 100 200 300 400 O 100 200 300 400 0 100 200 300 400 =
QPS QPS QPS QPS QPS
Microservices Monoliths

7
\ Cornell University

y Computer Systems Laboratory

HARDWARE DESIGN C SLii:

5. Tail at scale

. Brawny VS. Wlmpy cores 4. Application and frameworks

* Microservices are more sensitive to performance 3. Cluster management

unpredictability than monoliths 2. OS/Network overheads
1000 —S0cial Network Media Service

1200
N
T 1400

51600
c 1800
(]

52000
T 2200

2400
1000 Monolith Social Network Monolith Media Service

E-commerce Banking System

> 1. Hardware design

10°

Tail Latency norm QoS (x1)

Microservices

Monolith E-commerce Vonolith Banking System

10

~.1200
L 1400

Monoliths

10
n
®
o
=)

0 100 200 300 400) 100 200 300 400) 100 200 300 400) 100 200 300 400
Queries per Second (QPS).eries per Second (QPS) jeries per Second (QPS)eries per Second (QPS)

\\\\

Cornell University

Computer Systems Laboratory

HARDWARE DESIGN C Sl

5. Tail at scale

- Brawny VS. WImpy cores 4. Application and frameworks
* Microservices are more sensitive to performance 3. Cluster management
unpredictability than monolithic apps 2. OS/Network overheads
> 1. Hardware design

e Xeon vs Cavium servers

= Cycle breakdown of each microservice
 Smaller fraction of frontend stalls than monoliths

= J-cache pressure
* Lower I-cache pressure than monoliths

,J‘ . -
S\ Cornell University

&/ Computer Systerﬁs Laboratory

OS/NETWORK OVERHEADS C S|

5. Tail at scale
- RPC Overheads 4. Application and frameworks
* A large fraction of time spent in network stack 3. Cluster management

> 2. OS/Network overheads

* FPGA network acceleration
* Offload TCP stack on FPGA
* 10 — 68x improvement on network processing latency

1. Hardware design

* 43% - 2.2x improvement on end-to-end latency

DRAM)

7,
Bl Cornell University
5/ Computer Systems Laboratory

CLUSTER MANAGEMENT CSIE:

5. Tail at scale

. Latency baCk'Pressure 4. APplication and frameworks

* Bottleneck services pressure upstreaming services » | 3. Cluster management
2. OS/Network overheads

 Cause: Imperfect pipelining :
» HTTP/TCP HoL blocking 1. Hardware design
» Limited number of worker threads/connections

Example: HTTP 1.1 HoL blocking

o
oejelelele 9 [o[e)
NGINX bottleneck — =———————

o
olejejejele] — olojo/0
Memcached bottleneck > < Memcached

,J‘ . -
A Cornell University

&/ Computer Systerﬁs Laboratory

CLUSTER MANAGEMENT C S 1

5. Tail at scale

. CaSGadlng QOS VlOlatlonS 4. Application and frameworks

* Hotspots propagating along the dependency graph » | 3.Cluster management
2. OS/Network overheads

 No obvious correlation to CPU utilization

1. Hardware design

* Difficulty in discovering the bottleneck and long time to
recover from QoS violations

Back-end Back-end 1 02
’\B\ I —
100 9_‘1
(b}
c
@ S
. g 10° ‘cE
ks 10" £ =
c > 5
() &)
3 = -
S 02 10° &
Q 10" @ O
= -l

50 100 150 200 250 300 50 100 150 200 250 300
Front-end Time (s) Front-end Time (s)

7
A Cornell University

/ Computer Systems Laboratory

APPLICATION AND FRAMEWORKS C s I!;

= Serverless frameworks 5. Tail at scale
» | 4. Application and frameworks

* Compared long-running microservices on EC2 with short-
running microservices on AWS Lambda

3. Cluster management

2. OS/Network overheads
» Agile resource adjustments with diurnal load pattern 1 Hardware desi
gn

 Higher performance variability due to
» No control of lambda placement
» Communication through S3
» Loading of dependencies

,J‘ . -
SI'Y) Cornell University

5/ Computer Systems Laboratory

TAIL AT SCALE CSL.

= Impact of slow servers __» 5. Tailat Scale
* Larger cluster = larger impact of slow servers o Application and frameworks
* More severe tail latency increase compared to monoliths (3. Cluster management
2. OS/Network overheads

1. Hardware design

1.0 : 1.01 ;
-&—- Micro (40) -@&— Micro (40)
8 0.8 3¢ Micro (200) {| 4 0.8 —a~ Mono (40)
(@4 (@4
© 0.6 © 0.6
a 4
O 0.4+ O 0.4
3 3
0.01 | e e — 0.01 . —— . 1
0 1 2 3 4 5 0 1 2 3 4 5
Slow Servers (%) Slow Servers (%)

7
A Cornell University

s Computer Systerﬁs Laboratory

CONCLUSIONS CS L.

* C(Cloud applications from monoliths to microservices
e Study implications of microservices across the system stack
e Open-source benchmark suite for cloud and IoT microservices

* Explored the implications of microservices
* More sensitive to performance unpredictability
 DPotential of hardware acceleration for networking
* Need for cluster managers that account for dependencies
o Tail at scale effects more prominent in microservices

,J‘ . -
S\ Cornell University

&/ Computer Systerﬁs Laboratory

QUESTIONS? CS L.

* C(Cloud applications from monoliths to microservices
e Study implications of microservices across the system stack
e Open-source benchmark suite for cloud and IoT microservices

* Explored the implications of microservices
* More sensitive to performance unpredictability
 DPotential of hardware acceleration for networking
* Need for cluster managers that account for dependencies
o Tail at scale effects more prominent in microservices

,J‘ . -
S\ Cornell University

&/ Computer Systerﬁs Laboratory

