
AN OPEN-SOURCE BENCHMARK SUITE FOR MICROSERVICES AND
THEIR HARDWARE-SOFTWARE IMPLICATIONS FOR CLOUD AND

EDGE SYSTEMS

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayantara Katarki, 
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna Pancholi, 
Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon 

Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla and Christina Delimitrou

Cornell University

ASPLOS 2019

Session Cloud I



EXECUTIVE SUMMARY

 Cloud applications migrating from monoliths to microservices
• Monoliths: all functionality in a single service

• Microservices: many single-concerned, loosely-coupled services

• Modularity, specialization, faster development

• Datacenters designed for monoliths  microservices have different requirements

 An end-to-end benchmark suite for large-scale microservices

 Architectural and system implications
• Hardware design

• OS/networking overheads

• Cluster management

• Application & programming frameworks

• Tail at scale

1



FROM MONOLITHS TO MICROSERVICES

 Monolithic applications
• Single binary with entire business logic

 Limitations
• Too complex for continuous development 

• Obstacle to adopting new frameworks

• Poor scalability & elasticity

2

Monolith Application

login

orders

payments

shipping



FROM MONOLITHS TO MICROSERVICES

 Microservices
• Fine-grained, loosely-coupled, and single-

concerned

• Communicate with RPCs or RESTful APIs

 Pros
• Agile development

• Better modularity & elasticity

• Testing and debugging in isolation

 Cons
• Different hardware & software constraints

• Dependencies  complicate cluster 
management

3

login
orders payments

shipping



FROM MONOLITHS TO MICROSERVICES

4



MOTIVATION

 Explore implications of microservices across the system stack

5

1. Hardware design

2. OS/Network overheads

3. Cluster management

4. 

1. Hardware design

2. OS/Network overheads

3. Cluster management

4. Application and frameworks

5. Tail at scale



MOTIVATION

 Explore implications of microservices across the system stack

6

1. Hardware design

2. OS/Network overheads

3. Cluster management

4. 

1. Hardware design

2. OS/Network overheads

3. Cluster management

4. Application and frameworks

5. Tail at scale

Need representative, end-to-end applications
built with microservices



MOTIVATION

 Previous work in cloud benchmarking
• CloudSuite [ASPLOS’12]

• Sirius [ASPLOS’15]

• TailBench [IISWC’17]

• μSuite [IISWC’18]

 DeathStarBench suite
• Focus on large-scale microservices that stress typical datacenter design

7

Focus either on monolithic applications or 
applications with few tiers



DEATHSTARBENCH SUITE

 Design principles
• Representativeness

» Use of popular open-source applications and frameworks

» Service architecture following public documentation of real systems using 
microservices

8



DEATHSTARBENCH SUITE

 Design principles
• Representativeness

• End-to-end operation
» Full functionality using microservices

9



DEATHSTARBENCH SUITE

 Design principles
• Representativeness

• End-to-end operation

• Heterogeneity
» Wide range of programming languages and microservices frameworks

10



DEATHSTARBENCH SUITE

 Design principles
• Representativeness

• End-to-end operation

• Heterogeneity

• Modularity
» Single-concerned and loosely-coupled services

11



DEATHSTARBENCH SUITE

 Design principles
• Representativeness

• End-to-end operation

• Heterogeneity

• Modularity

• Reconfigurability
» Easy to update or change components with minimal effort

12



DEATHSTARBENCH SUITE

 5 end-to-end applications, tens of unique microservices each
• Social Network

• Media Service

• E-Commerce Service

• Banking System

• Drone Coordination System

13



DEATHSTARBENCH SUITE

 Social network

14



DEATHSTARBENCH SUITE

 Media service

15



DEATHSTARBENCH SUITE

 E-commerce service

16



DEATHSTARBENCH SUITE

 Banking system

17



DEATHSTARBENCH SUITE

 Drone coordination system

18

Client
Load 

Balancer
NGINX Controller

Construct 

Route

TargetDB

ImageDB

VideoDB

LocationDB

SpeedDB

LuminosityDB

OrientationDB

Image

Video

Location

Speed

Luminosity

Orientation

Stocking 

ImageDB

MotionCtrl

Image 

Recognition

Obstacle 

Avoidance

Controller

Log(node.js)

Edge Router

Edge Swarm

Frontend EdgeCloud



MongoDB

MongoDB

MongoDB

MongoDB

MongoDB

MongoDB

Memcached

Redis

Memcached

Memcached

Memcached

Memcached

Memcached

RabbitMQ

Read 

Post

User 

Timeline

Write Home 

Timeline

Unique ID

URL Shorten

Image

Video

Text

User Tag

Favorite

Search

Recommender

User

Compose 

Post

Post 

Storage
Read Home 

Timeline

Social 

Graph

Load 

Balancer
NGINX

Video Store 

Frontend

Image Store 

Frontend

Client

Video storage

Image storage

Social graph 

storage

Home timeline 

storage

User timeline 

storage

Post storage

User storage

Frontend Logic Caching & Storage

Index1
IndexnIndex0

CASE STUDY: SOCIAL NETWORK

 User sign up/login

19



CASE STUDY: SOCIAL NETWORK

 Write posts

20

Client
Load 

Balancer
NGINX

Unique ID

URL Shorten

Image

Video

Text

User Tag

Favorite

Search

Recommender

User

Compose 

Post

Post 

Storage
Read Home 

Timeline

Social 

Graph

Memcached MongoDB

Redis

Memcached MongoDB

Read 

Post
Memcached MongoDB

Memcached MongoDB
User 

Timeline

RabbitMQ

Write Home 

Timeline

Frontend Logic Caching & Storage

Memcached MongoDB

Memcached MongoDB

Video storage

Image storage

Social graph 

storage

Home timeline 

storage

User timeline 

storage

Post storage

User storage

Video Store 

Frontend

Image Store 

Frontend Index1
IndexnIndex0



CASE STUDY: SOCIAL NETWORK

 Read home timeline

21

MongoDB

MongoDB

MongoDB

MongoDB

MongoDB

MongoDB

Memcached

Redis

Memcached

Memcached

Memcached

Memcached

Memcached

RabbitMQ

Read 

Post

User 

Timeline

Write Home 

Timeline

Unique ID

URL Shorten

Image

Video

Text

User Tag

Favorite

Search

Recommender

User

Compose 

Post

Post 

Storage
Read Home 

Timeline

Social 

Graph

Load 

Balancer
NGINX

Video Store 

Frontend

Image Store 

Frontend

Client

Video storage

Image storage

Social graph 

storage

Home timeline 

storage

User timeline 

storage

Post storage

User storage

Frontend Logic Caching & Storage

Index1
IndexnIndex0



CASE STUDY: SOCIAL NETWORK

 Search

22

Index1
IndexnIndex0

MongoDB

MongoDB

MongoDB

MongoDB

MongoDB

MongoDB

Memcached

Redis

Memcached

Memcached

Memcached

Memcached

Memcached

RabbitMQ

Unique ID

URL Shorten

Image

Video

Text

User Tag

Favorite

Search

Recommender

User

Compose 

Post

Post 

Storage
Read Home 

Timeline

Social 

Graph

Read 

Post

User 

Timeline

Write Home 

Timeline

Load 

Balancer
NGINXClient

Frontend Logic Caching & Storage

Video storage

Image storage

Social graph 

storage

Home timeline 

storage

User timeline 

storage

Post storage

User storage

Video Store 

Frontend

Image Store 

Frontend



CASE STUDY: SOCIAL NETWORK

 Recommendation

23

MongoDB

MongoDB

MongoDB

MongoDB

MongoDB

MongoDB

Memcached

Redis

Memcached

Memcached

Memcached

Memcached

Memcached

RabbitMQ

Unique ID

URL Shorten

Image

Video

Text

User Tag

Favorite

Search

Recommender

User

Compose 

Post

Post 

Storage
Read Home 

Timeline

Social 

Graph

Read 

Post

User 

Timeline

Write Home 

Timeline

Load 

Balancer
NGINXClient

Frontend Logic Caching & Storage

Video storage

Image storage

Social graph 

storage

Home timeline 

storage

User timeline 

storage

Post storage

User storage

Video Store 

Frontend

Image Store 

Frontend Index1
IndexnIndex0



ARCHITECTURAL AND SYSTEM IMPLICATIONS

 Explore implications of microservices across the system stack

24

1. Hardware design

2. OS/Network overheads

3. Cluster management

4. 

1. Hardware design

2. OS/Network overheads

3. Cluster management

4. Application and frameworks

5. Tail at scale



HARDWARE DESIGN

 Brawny vs. wimpy cores
• Microservices are more sensitive to performance 

unpredictability than monoliths

25

Microservices Monoliths

1. Hardware design

2. OS/Network overheads

3. Cluster management

4. Application and frameworks

5. Tail at scale



HARDWARE DESIGN

 Brawny vs. wimpy cores
• Microservices are more sensitive to performance 

unpredictability than monoliths

26

Microservices

Monoliths

1. Hardware design

2. OS/Network overheads

3. Cluster management

4. Application and frameworks

5. Tail at scale



HARDWARE DESIGN

 Brawny vs. wimpy cores
• Microservices are more sensitive to performance 

unpredictability than monolithic apps

• Xeon vs Cavium servers

 Cycle breakdown of each microservice
• Smaller fraction of frontend stalls than monoliths

 I-cache pressure
• Lower I-cache pressure than monoliths

27

1. Hardware design

2. OS/Network overheads

3. Cluster management

4. Application and frameworks

5. Tail at scale



OS/NETWORK OVERHEADS

 RPC overheads
• A large fraction of time spent in network stack

 FPGA network acceleration
• Offload TCP stack on FPGA

• 10 − 68x improvement on network processing latency

• 43% - 2.2x improvement on end-to-end latency 

28

1. Hardware design

2. OS/Network overheads

3. Cluster management

4. Application and frameworks

5. Tail at scale



MemcachedNGINX

CLUSTER MANAGEMENT

 Latency back-pressure
• Bottleneck services pressure upstreaming services

• Cause: Imperfect pipelining
» HTTP/TCP HoL blocking

» Limited number of worker threads/connections

29

NGINX bottleneck NGINX Memcached

🔥

NGINX Memcached

🔥
Memcached bottleneck

Example: HTTP 1.1 HoL blocking

1. Hardware design

2. OS/Network overheads

3. Cluster management

4. Application and frameworks

5. Tail at scale



CLUSTER MANAGEMENT

 Cascading QoS violations
• Hotspots propagating along the dependency graph

• No obvious correlation to CPU utilization

• Difficulty in discovering the bottleneck and long time to 
recover from QoS violations

30

1. Hardware design

2. OS/Network overheads

3. Cluster management

4. Application and frameworks

5. Tail at scale



APPLICATION AND FRAMEWORKS

 Serverless frameworks
• Compared long-running microservices on EC2 with short–

running microservices on AWS Lambda

• Agile resource adjustments with diurnal load pattern

• Higher performance variability due to

» No control of lambda placement

» Communication through S3 

» Loading of dependencies

31

1. Hardware design

2. OS/Network overheads

3. Cluster management

4. Application and frameworks

5. Tail at scale



TAIL AT SCALE

 Impact of slow servers
• Larger cluster  larger impact of slow servers

• More severe tail latency increase compared to monoliths

32

1. Hardware design

2. OS/Network overheads

3. Cluster management

1. Hardware design

2. OS/Network overheads

3. Cluster management

4. Application and frameworks

5. Tail at Scale



CONCLUSIONS

• Cloud applications from monoliths to microservices

• Study implications of microservices across the system stack 

• Open-source benchmark suite for cloud and IoT microservices

• Explored the implications of microservices
• More sensitive to performance unpredictability

• Potential of hardware acceleration for networking

• Need for cluster managers that account for dependencies

• Tail at scale effects more prominent in microservices

33



QUESTIONS?
• Cloud applications from monoliths to microservices

• Study implications of microservices across the system stack 

• Open-source benchmark suite for cloud and IoT microservices

• Explored the implications of microservices
• More sensitive to performance unpredictability

• Potential of hardware acceleration for networking

• Need for cluster managers that account for dependencies

• Tail at scale effects more prominent in microservices

34


