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EXECUTIVE SUMMARY

 Cloud applications migrating from monoliths to microservices
• Monoliths: all functionality in a single service

• Microservices: many single-concerned, loosely-coupled services

• Modularity, specialization, faster development

• Datacenters designed for monoliths  microservices have different requirements

 An end-to-end benchmark suite for large-scale microservices

 Architectural and system implications
• Hardware design

• OS/networking overheads

• Cluster management

• Application & programming frameworks

• Tail at scale
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FROM MONOLITHS TO MICROSERVICES

 Monolithic applications
• Single binary with entire business logic

 Limitations
• Too complex for continuous development 

• Obstacle to adopting new frameworks

• Poor scalability & elasticity
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FROM MONOLITHS TO MICROSERVICES

 Microservices
• Fine-grained, loosely-coupled, and single-

concerned

• Communicate with RPCs or RESTful APIs

 Pros
• Agile development

• Better modularity & elasticity

• Testing and debugging in isolation

 Cons
• Different hardware & software constraints

• Dependencies  complicate cluster 
management
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FROM MONOLITHS TO MICROSERVICES
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MOTIVATION

 Explore implications of microservices across the system stack
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MOTIVATION

 Previous work in cloud benchmarking
• CloudSuite [ASPLOS’12]

• Sirius [ASPLOS’15]

• TailBench [IISWC’17]

• μSuite [IISWC’18]

 DeathStarBench suite
• Focus on large-scale microservices that stress typical datacenter design
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DEATHSTARBENCH SUITE

 Design principles
• Representativeness

» Use of popular open-source applications and frameworks

» Service architecture following public documentation of real systems using 
microservices
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DEATHSTARBENCH SUITE

 Design principles
• Representativeness

• End-to-end operation
» Full functionality using microservices
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DEATHSTARBENCH SUITE

 Design principles
• Representativeness

• End-to-end operation

• Heterogeneity
» Wide range of programming languages and microservices frameworks
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DEATHSTARBENCH SUITE

 Design principles
• Representativeness

• End-to-end operation

• Heterogeneity

• Modularity
» Single-concerned and loosely-coupled services
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DEATHSTARBENCH SUITE

 Design principles
• Representativeness

• End-to-end operation

• Heterogeneity

• Modularity

• Reconfigurability
» Easy to update or change components with minimal effort
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DEATHSTARBENCH SUITE

 5 end-to-end applications, tens of unique microservices each
• Social Network

• Media Service

• E-Commerce Service

• Banking System

• Drone Coordination System
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DEATHSTARBENCH SUITE

 Social network
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DEATHSTARBENCH SUITE

 Media service
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DEATHSTARBENCH SUITE

 E-commerce service
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DEATHSTARBENCH SUITE

 Banking system
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DEATHSTARBENCH SUITE

 Drone coordination system
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CASE STUDY: SOCIAL NETWORK

 User sign up/login
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CASE STUDY: SOCIAL NETWORK

 Write posts
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CASE STUDY: SOCIAL NETWORK

 Read home timeline
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CASE STUDY: SOCIAL NETWORK

 Search
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CASE STUDY: SOCIAL NETWORK

 Recommendation
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ARCHITECTURAL AND SYSTEM IMPLICATIONS

 Explore implications of microservices across the system stack
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HARDWARE DESIGN

 Brawny vs. wimpy cores
• Microservices are more sensitive to performance 

unpredictability than monoliths
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HARDWARE DESIGN

 Brawny vs. wimpy cores
• Microservices are more sensitive to performance 

unpredictability than monolithic apps

• Xeon vs Cavium servers

 Cycle breakdown of each microservice
• Smaller fraction of frontend stalls than monoliths

 I-cache pressure
• Lower I-cache pressure than monoliths

27

1. Hardware design

2. OS/Network overheads

3. Cluster management

4. Application and frameworks

5. Tail at scale



OS/NETWORK OVERHEADS

 RPC overheads
• A large fraction of time spent in network stack

 FPGA network acceleration
• Offload TCP stack on FPGA

• 10 − 68x improvement on network processing latency

• 43% - 2.2x improvement on end-to-end latency 
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MemcachedNGINX

CLUSTER MANAGEMENT

 Latency back-pressure
• Bottleneck services pressure upstreaming services

• Cause: Imperfect pipelining
» HTTP/TCP HoL blocking

» Limited number of worker threads/connections
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CLUSTER MANAGEMENT

 Cascading QoS violations
• Hotspots propagating along the dependency graph

• No obvious correlation to CPU utilization

• Difficulty in discovering the bottleneck and long time to 
recover from QoS violations
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APPLICATION AND FRAMEWORKS

 Serverless frameworks
• Compared long-running microservices on EC2 with short–

running microservices on AWS Lambda

• Agile resource adjustments with diurnal load pattern

• Higher performance variability due to

» No control of lambda placement

» Communication through S3 

» Loading of dependencies
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TAIL AT SCALE

 Impact of slow servers
• Larger cluster  larger impact of slow servers

• More severe tail latency increase compared to monoliths
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CONCLUSIONS

• Cloud applications from monoliths to microservices

• Study implications of microservices across the system stack 

• Open-source benchmark suite for cloud and IoT microservices

• Explored the implications of microservices
• More sensitive to performance unpredictability

• Potential of hardware acceleration for networking

• Need for cluster managers that account for dependencies

• Tail at scale effects more prominent in microservices
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QUESTIONS?
• Cloud applications from monoliths to microservices

• Study implications of microservices across the system stack 

• Open-source benchmark suite for cloud and IoT microservices

• Explored the implications of microservices
• More sensitive to performance unpredictability

• Potential of hardware acceleration for networking

• Need for cluster managers that account for dependencies

• Tail at scale effects more prominent in microservices
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