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Abstract

Performance unpredictability is a major roadblock towards
cloud adoption, and has performance, cost, and revenue
ramifications. Predictable performance is even more crit-
ical as cloud services transition from monolithic designs to
microservices. Detecting QoS violations after they occur in
systems with microservices results in long recovery times, as
hotspots propagate and amplify across dependent services.

We present Seer, an online cloud performance debugging
system that leverages deep learning and the massive amount
of tracing data cloud systems collect to learn spatial and
temporal patterns that translate to QoS violations. Seer com-
bines lightweight distributed RPC-level tracing, with detailed
low-level hardware monitoring to signal an upcoming QoS
violation, and diagnose the source of unpredictable perfor-
mance. Once an imminent QoS violation is detected, Seer
notifies the cluster manager to take action to avoid perfor-
mance degradation altogether. We evaluate Seer both in local
clusters, and in large-scale deployments of end-to-end appli-
cations built with microservices with hundreds of users. We
show that Seer correctly anticipates QoS violations 91% of
the time, and avoids the QoS violation to begin with in 84%
of cases. Finally, we show that Seer can identify application-
level design bugs, and provide insights on how to better
architect microservices to achieve predictable performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’19, April 13-17, 2019, Providence, RI, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6240-5/19/04...$15.00
https://doi.org/10.1145/3297858.3304004

CCS Concepts + Computer systems organization —
Cloud computing; Availability; - Computing method-
ologies — Neural networks; « Software and its engi-
neering — Scheduling.

Keywords cloud computing, datacenter, performance de-
bugging, QoS, deep learning, data mining, tracing, monitor-
ing, microservices, resource management

ACM Reference Format:

Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna
Pancholi, and Christina Delimitrou. 2019. Seer: Leveraging Big
Data to Navigate the Complexity of Performance Debugging in
Cloud Microservices. In 2019 Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’19), April 13-17, 2019,
Providence, RI, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3297858.3304004

1 Introduction

Cloud computing services are governed by strict quality
of service (QoS) constraints in terms of throughput, and
more critically tail latency [14, 28, 31, 34]. Violating these
requirements worsens the end user experience, leads to loss
of availability and reliability, and has severe revenue im-
plications [13, 14, 28, 32, 35, 36]. In an effort to meet these
performance constraints and facilitate frequent application
updates, cloud services have recently undergone a major
shift from complex monolithic designs, which encompass the
entire functionality in a single binary, to graphs of hundreds
of loosely-coupled, single-concerned microservices [9, 45].
Microservices are appealing for several reasons, including
accelerating development and deployment, simplifying cor-
rectness debugging, as errors can be isolated in specific tiers,
and enabling a rich software ecosystem, as each microservice
is written in the language or programming framework that
best suits its needs.

At the same time microservices signal a fundamental de-
parture from the way traditional cloud applications were
designed, and bring with them several system challenges.
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Specifically, even though the quality-of-service (QoS) re-
quirements of the end-to-end application are similar for mi-
croservices and monoliths, the tail latency required for each
individual microservice is much stricter than for traditional
cloud applications [34, 43-45, 61, 62, 64, 67, 70, 77]. This puts
increased pressure on delivering predictable performance, as
dependencies between microservices mean that a single mis-
behaving microservice can cause cascading QoS violations
across the system.

Fig. 1 shows three
instances of real large-
scale production de-
ployments of microser-
vices [2, 9, 11]. The
perimeter of the cir-
cle (or sphere surface)
shows the different mi-
croservices, and edges
show dependencies be-
tween them. We also
show these dependen-
cies for Social Network,
one of the large-scale
services used in the
evaluation of this work
(see Sec. 3). Unfortu-
nately the complexity of modern cloud services means that
manually determining the impact of each pair-wide depen-
dency on end-to-end QoS, or relying on the user to provide
this information is impractical.

Apart from software heterogeneity, datacenter hardware is
also becoming increasingly heterogeneous as special-purpose
architectures [20-22, 39, 55] and FPGAs are used to accel-
erate critical operations [19, 25, 40, 75]. This adds to the
existing server heterogeneity in the cloud where servers are
progressively replaced and upgraded over the datacenter’s
provisioned lifetime [31, 33, 65, 68, 95], and further compli-
cates the effort to guarantee predictable performance.

The need for performance predictability has prompted a
long line of work on performance tracing, monitoring, and
debugging systems [24, 42, 46, 78, 85, 93, 97]. Systems like
Dapper and GWP, for example, rely on distributed tracing
(often at RPC level) and low-level hardware event monitoring
respectively to detect performance abnormalities, while the
Mystery Machine [24] leverages the large amount of logged
data to extract the causal relationships between requests.

Even though such tracing systems help cloud providers
detect QoS violations and apply corrective actions to restore
performance, until those actions take effect, performance suf-
fers. For monolithic services this primarily affects the service
experiencing the QoS violation itself, and potentially services
it is sharing physical resources with. With microservices,

Social Network

Amazon

Figure 1. Microservices
graphs in three large cloud
providers [2, 9, 11], and our
Social Network service.

however, a posteriori QoS violation detection is more im-
pactful, as hotspots propagate and amplify across dependent
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Figure 2. The performance impact of a posteriori perfor-
mance diagnostics for a monolith and for microservices.

services, forcing the system to operate in a degraded state for
longer, until all oversubscribed tiers have been relieved, and
all accumulated queues have drained. Fig. 2a shows the im-
pact of reacting to a QoS violation after it occurs for the Social
Network application with several hundred users running on
20 two-socket, high-end servers. Even though the scheduler
scales out all oversubscribed tiers once the violation occurs,
it takes several seconds for the service to return to nominal
operation. There are two reasons for this; first, by the time
one tier has been upsized, its neighboring tiers have built
up request backlogs, which cause them to saturate in turn.
Second, utilization is not always a good proxy for tail latency
and/or QoS violations [14, 28, 61, 62, 73]. Fig. 2b shows the
utilization of all microservices ordered from the back-end
to the front-end over time, and Fig. 2c shows their corre-
sponding 99" percentile latencies normalized to nominal
operation. Although there are cases where high utilization
and high latency match, the effect of hotspots propagating
through the service is much more pronounced when looking
at latencies, with the back-end tiers progressively saturating
the service’s logic and front-end microservices. In contrast,
there are highly-utilized microservices that do not experi-
ence increases in their tail latency. A common way to address
such QoS violations is rate limiting [86], which constrains
the incoming load, until hotspots dissipate. This restores
performance, but degrades the end user’s experience, as a
fraction of input requests is dropped.

We present Seer, a proactive cloud performance debugging
system that leverages practical deep learning techniques to
diagnose upcoming QoS violations in a scalable and online
manner. First, Seer is proactive to avoid the long recovery
periods of a posteriori QoS violation detection. Second, it
uses the massive amount of tracing data cloud systems collect
over time to learn spatial and temporal patterns that lead
to QoS violations early enough to avoid them altogether.
Seer includes a lightweight, distributed RPC-level tracing
system, based on Apache Thrift’s timing interface [1], to
collect end-to-end traces of request execution, and track per-
microservice outstanding requests. Seer uses these traces
to train a deep neural network to recognize imminent QoS
violations, and identify the microservice(s) that initiated the
performance degradation. Once Seer identifies the culprit



of a QoS violation that will occur over the next few 100s of
milliseconds, it uses detailed per-node hardware monitoring
to determine the reason behind the degraded performance,
and provide the cluster scheduler with recommendations on
actions required to avoid it.

We evaluate Seer both in our local cluster of 20 two-socket
servers, and on large-scale clusters on Google Compute En-
gine (GCE) with a set of end-to-end interactive applications
built with microservices, including the Social Network above.
In our local cluster, Seer correctly identifies upcoming QoS
violations in 93% of cases, and correctly pinpoints the mi-
croservice initiating the violation 89% of the time. To combat
long inference times as clusters scale, we offload the DNN
training and inference to Google’s Tensor Processing Units
(TPUs) when running on GCE [55]. We additionally experi-
ment with using FPGAs in Seer via Project Brainwave [25]
when running on Windows Azure, and show that both types
of acceleration speed up Seer by 200-235x, with the TPU help-
ing the most during training, and vice versa for inference.
Accuracy is consistent with the small cluster results.

Finally, we deploy Seer in a large-scale installation of the
Social Network service with several hundred users, and show
that it not only correctly identifies 90.6% of upcoming QoS
violations and avoids 84% of them, but that detecting pat-
terns that create hotspots helps the application’s developers
improve the service design, resulting in a decreasing number
of QoS violations over time. As cloud application and hard-
ware complexity continues to grow, data-driven systems like
Seer can offer practical solutions for systems whose scale
make empirical approaches intractable.

2 Related Work

Performance unpredictability is a well-studied problem in
public clouds that stems from platform heterogeneity, re-
source interference, software bugs and load variation [23,
32, 34, 35, 38, 53, 58, 61-63, 72, 76, 81, 81]. We now review
related work on reducing performance unpredictability in
cloud systems, including through scheduling and cluster
management, or through online tracing systems.

Cloud management: The prevalence of cloud computing
has motivated several cluster management designs. Systems
like Mesos [51], Torque [87], Tarcil [38], and Omega [82]
all target the problem of resource allocation in large, multi-
tenant clusters. Mesos is a two-level scheduler. It has a central
coordinator that makes resource offers to application frame-
works, and each framework has an individual scheduler that
handles its assigned resources. Omega on the other hand,
follows a shared-state approach, where multiple concurrent
schedulers can view the whole cluster state, with conflicts be-
ing resolved through a transactional mechanism [82]. Tarcil
leverages information on the type of resources applications
need to employ a sampling-base distributed scheduler that
returns high quality resources within a few milliseconds [38].

Dejavu identifies a few workload classes and reuses previ-
ous allocations for each class, to minimize reallocation over-
heads [90]. CloudScale [83], PRESS [48], AGILE [70] and the
work by Gmach et al. [47] predict future resource needs on-
line, often without a priori knowledge. Finally, auto-scaling
systems, such as Rightscale [79], automatically scale the
number of physical or virtual instances used by webserving
workloads, to accommodate changes in user load.

A second line of work tries to identify resources that will
allow a new, potentially-unknown application to meet its
performance (throughput or tail latency) requirements [29,
31,32, 34, 66, 68, 95]. Paragon uses classification to determine
the impact of platform heterogeneity and workload interfer-
ence on an unknown, incoming workload [30, 31]. It then
uses this information to achieve predictable performance,
and high cluster utilization. Paragon, assumes that the clus-
ter manager has full control over all resources, which is often
not the case in public clouds. Quasar extends the use of data
mining in cluster management by additionally determining
the appropriate amount of resources for a new application.
Nathuji et al. developed a feedback-based scheme that tunes
resource assignments to mitigate memory interference [69].
Yang et al. developed an online scheme that detects mem-
ory pressure and finds colocations that avoid interference on
latency-sensitive workloads [95]. Similarly, DeepDive detects
and manages interference between co-scheduled workloads
in a VM environment [71].

Finally, CPI2 [98] throttles low-priority workloads that
introduce destructive interference to important, latency-
critical services, using low-level metrics of performance col-
lected through Google-Wide Profiling (GWP). In terms of
managing platform heterogeneity, Nathuji et al. [68] and
Mars et al. [64] quantified its impact on conventional bench-
marks and Google services, and designed schemes to predict
the most appropriate servers for a workload.

Cloud tracing & diagnostics: There is extensive related
work on monitoring systems that has shown that execu-
tion traces can help diagnose performance, efficiency, and
even security problems in large-scale systems [12, 24, 26, 42,
54, 77, 85, 93, 97]. For example, X-Trace is a tracing frame-
work that provides a comprehensive view of the behavior of
services running on large-scale, potentially shared clusters.
X-Trace supports several protocols and software systems,
and has been deployed in several real-world scenarios, in-
cluding DNS resolution, and a photo-hosting site [42]. The
Mystery Machine, on the other hand, leverages the massive
amount of monitoring data cloud systems collect to deter-
mine the causal relationship between different requests [24].
Cloudseer serves a similar purpose, building an automaton
for the workflow of each task based on normal execution,
and then compares against this automaton at runtime to
determine if the workflow has diverged from its expected
behavior [97]. Finally, there are several production systems,



. Communication Unique Per-language LoC breakdown
Service . . .
Protocol Microservices (end-to-end service)

,,,,,, Social Network RPC 36 34%C, 23% C++, 18% Java, 7% node, 6% Python, 5% Scala, 3% PHP, 2% JS, 2% Go
. MediaService RPC 38 30%C, 21% C++, 20% Java, 107

E-commerce Site REST 41

Banking System RPC 28
Hotel Reservations [3] RPC 15 89% Go, 7% HTML, 4% Python

Table 1. Characteristics and code composition of each end-to-end microservices-based application.
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Figure 3. Dependency graph between the microservices of the end-to-

end Social Network application.

including Dapper [85], GWP [78], and Zipkin [8] which pro-
vide the tracing infrastructure for large-scale productions
services at Google and Twitter, respectively. Dapper and Zip-
kin trace distributed user requests at RPC granularity, while
GWP focuses on low-level hardware monitoring diagnostics.

Root cause analysis of performance abnormalities in the
cloud has also gained increased attention over the past few
years, as the number of interactive, latency-critical services
hosted in cloud systems has increased. Jayathilaka et al. [54],
for example, developed Roots, a system that automatically
identifies the root cause of performance anomalies in web
applications deployed in Platform-as-a-Service (PaaS) clouds.
Roots tracks events within the PaaS cloud using a combina-
tion of metadata injection and platform-level instrumenta-
tion. Weng et al. [91] similarly explore the cloud provider’s
ability to diagnose the root cause of performance abnormali-
ties in multi-tier applications. Finally, Ouyang et al. [74] focus
on the root cause analysis of straggler tasks in distributed
programming frameworks, like MapReduce and Spark.

Even though this work does not specifically target interac-
tive, latency-critical microservices, or applications of similar
granularity, such examples provide promising evidence that
data-driven performance diagnostics can improve a large-
scale system’s ability to identify performance anomalies, and
address them to meet its performance guarantees.

Figure 4. Architecture of the hotel reserva-
tion site using Go-microservices [3].

3 End-to-End Applications with
Microservices

We motivate and evaluate Seer with a set of new end-to-end,
interactive services built with microservices. Even though
there are open-source microservices that can serve as compo-
nents of a larger application, such as nginx [6], memcached [41],
MongoDB [5], Xapian [57], and RabbitMQ [4], there are currently
no publicly-available end-to-end microservices applications,
with the exception of a few simple architectures, like Go-
microservices [3], and Sockshop [7]. We design four end-to-
end services implementing a Social Network, a Media Service,
an E-commerce Site, and a Banking System. Starting from
the Go-microservices architecture [3], we also develop an
end-to-end Hotel Reservation system. Services are designed
to be representative of frameworks used in production sys-
tems, modular, and easily reconfigurable. The end-to-end
applications and tracing infrastructure are described in more
detail and open-sourced in [45].

Table 1 briefly shows the characteristics of each end-to-
end application, including its communication protocol, the
number of unique microservices it includes, and its break-
down by programming language and framework. Unless
otherwise noted, all microservices are deployed in Docker
containers. Below, we briefly describe the scope and func-
tionality of each service.
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Figure 5. The architecture of the end-to-end E-commerce
application implementing an online clothing store.

3.1 Social Network

Scope: The end-to-end service implements a broadcast-style
social network with uni-directional follow relationships.

Functionality: Fig. 3 shows the architecture of the end-to-
end service. Users (client) send requests over http, which
first reach a load balancer, implemented with nginx, which
selects a specific webserver is selected, also in nginx. Users
can create posts embedded with text, media, links, and tags to
other users, which are then broadcasted to all their followers.
Users can also read, favorite, and repost posts, as well as reply
publicly, or send a direct message to another user. The appli-
cation also includes machine learning plugins, such as ads
and user recommender engines [15, 16, 59, 92], a search ser-
vice using Xapian [57], and microservices that allow users to
follow, unfollow, or block other accounts. Inter-microservice
messages use Apache Thrift RPCs [1]. The service’s backend
uses memcached for caching, and MongoDB for persistently stor-
ing posts, user profiles, media, and user recommendations.
This service is broadly deployed at Cornell and elsewhere,
and currently has several hundred users. We use this in-
stallation to test the effectiveness and scalability of Seer in
Section 6.

3.2 Media Service

Scope: The application implements an end-to-end service
for browsing movie information, as well as reviewing, rating,
renting, and streaming movies [9, 11].

Functionality: As with the social network, a client request
hits the load balancer which distributes requests among mul-
tiple nginx webservers. The front-end is similar to Social
Network, and users can search and browse information about
movies, including the plot, photos, videos, and review in-
formation, as well as insert a review for a specific movie by
logging in to their account. Users can also select to rent a
movie, which involves a payment authentication module to

verify the user has enough funds, and a video streaming mod-
ule using nginx-hls, a production nginx module for HTTP
live streaming. Movie files are stored in NFS, to avoid the
latency and complexity of accessing chunked records from
non-relational databases, while reviews are held in memcached
and MongoDB instances. Movie information is maintained in
a sharded and replicated MySQL DB. We are similarly de-
ploying Media Service as a hosting site for project demos at
Cornell, which students can browse and review.

3.3 E-Commerce Service

Scope: The service implements an e-commerce site for cloth-
ing. The design draws inspiration, and uses several compo-
nents of the open-source Sockshop application [7].

Functionality: The application front-end here is a node. js
service. Clients can use the service to browse the inventory
using catalogue, a Go microservice that mines the back-
end memcached and MongoDB instances holding information
about products. Users can also place orders (Go) by adding
items to their cart (Java). After they log in (Go) to their ac-
count, they can select shipping options (Java), process their
payment (Go), and obtain an invoice (Java) for their order.
Orders are serialized and committed using QueueMaster (Go).
Finally, the service includes a recommender engine (C++), and
microservices for creating wishlists (Java).

3.4 Banking System

Scope: The service implements a secure banking system,
supporting payments, loans, and credit card management.

Functionality: Users interface with a node. js front-end,
similar to E-commerce, to login to their account, search in-
formation about the bank, or contact a representative. Once
logged in, a user can process a payment from their account,
pay their credit card or request a new one, request a loan, and
obtain information about wealth management options. Most
microservices are written in Java and Javascript. The back-
end databases are memcached and MongoDB instances. The ser-
vice also has a relational database (BankInfoDB) that includes
information about the bank, its services, and representatives.

3.5 Hotel Reservation Site

Scope: The service is an online hotel reservation site for
browsing information about hotels, and making reservations.

Functionality: The service is based on the Go-microservices
open-source project [3], augmented with backend databases,
and machine learning widgets for advertisement and hotel
recommendations. A client request is first directed to one
of the front-end webservers in node.js by a load balancer.
The front-end then interfaces with the search engine, which
allows users to explore hotel availability in a given region,
and place a reservation. The service back-end consists of
memcached and MongoDB instances.
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4 Seer Design
4.1 Overview

Fig. 6 shows the high-level architecture of the system. Seer is
an online performance debugging system for cloud systems
hosting interactive, latency-critical services. Even though we
are focusing our analysis on microservices, where the impact
of QoS violations is more severe, Seer is also applicable to
general cloud services, and traditional multi-tier or Service-
Oriented Architecture (SOA) workloads. Seer uses two levels
of tracing, shown in Fig. 7.

First, it uses a light-

° RPC-level tracing weight, distributed RPC-
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ecution traces for each
user request, including
per-tier latency and out-
standing requests, asso-
ciates RPCs belonging
to the same end-to-end
request, and aggregates
them to a centralized Cassandra database (TraceDB). From
there traces are used to train Seer to recognize patterns in
space (between microservices) and time that lead to QoS
violations. At runtime, Seer consumes real-time streaming
traces to infer whether there is an imminent QoS violation.

When a QoS violation is expected to occur and a culprit mi-
croservice has been located, Seer uses its lower tracing level,
which consists of detailed per-node, low-level hardware mon-
itoring primitives, such as performance counters, to identify
the reason behind the QoS violation. It also uses this informa-
tion to provide the cluster manager with recommendations
on how to avoid the performance degradation altogether.
When Seer runs on a public cloud where performance coun-
ters are disabled, it uses a set of tunable microbenchmarks
to determine the source of unpredictable performance (see
Sec. 4.4). Using two specialized tracing levels instead of col-
lecting detailed low-level traces for all active microservices
ensures that the distributed tracing is lightweight enough to

Figure 7. The two levels of
tracing used in Seer.
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Figure 8. Distributed tracing and instrumentation in Seer.

track all active requests and services in the system, and that
detailed low-level hardware tracing is only used on-demand,
for microservices likely to cause performance disruptions. In
the following sections we describe the design of the tracing
system, the learning techniques in Seer and its low-level
diagnostic framework, and the system insights we can draw
from Seer’s decisions to improve cloud application design.

4.2 Distributed Tracing

A major challenge with microservices is that one cannot
simply rely on the client to report performance, as with
traditional client-server applications. We have developed
a distributed tracing system for Seer, similar in design to
Dapper [85] and Zipkin [8] that records per-microservice
latencies, using the Thrift timing interface, as shown in Fig. 8.
We additionally track the number of requests queued in each
microservice (outstanding requests), since queue lengths are
highly correlated with performance and QoS violations [46,
49, 56, 96]. In all cases, the overhead from tracing without
request sampling is negligible, less than 0.1% on end-to-end
latency, and less than 0.15% on throughput (QPS), which
is tolerable for such systems [24, 78, 85]. Traces from all
microservices are aggregated in a centralized database [18].

Instrumentation: The tracing system requires two types
of application instrumentation. First, to distinguish between
the time spent processing network requests, and the time
that goes towards application computation, we instrument
the application to report the time it sees a new request (post-
RPC processing). We similarly instrument the transmit side
of the application. Second, systems have multiple sources of
queueing in both hardware and software. To obtain accurate
measurements of queue lengths per microservice, we need to
account for these different queues. Fig. 8 shows an example of



Layers Nonlinear . Batch
Name  LoC FC Conv Vect Total Function Weights Size
CONN 1456 8 8 RelU 30K 4
(LSTM 944 12 6 18  sigmoidtanh 52K 32
Seer 2882 10 7 5 22 RelU 80K 32

sigmoid,tanh

Table 2. The different neural network configurations we
explored for Seer.

Seer’s instrumentation for memcached. Memcached includes
five main stages [60], TCP/IP receive, epoll/libevent, read-
ing the request from the socket, processing the request, and
responding over TCP/IP, either with the <k, v> pair for a read,
or with an ack for a write. Each of these stages includes a
hardware (NIC) or software (epoll,socket read,memcached
proc) queue. For the NIC queues, Seer filters packets based on
the destination microservice, but accounts for the aggregate
queue length if hardware queues are shared, since that will
impact how fast a microservice’s packets get processed. For
the software queues, Seer inserts probes in the application
to read the number of queued requests in each case.

Limited instrumentation: As seen above, accounting for
all sources of queueing in a complex system requires non-
trivial instrumentation. This can become cumbersome if
users leverage third-party applications in their services, or in
the case of public cloud providers which do not have access
to the source code of externally-submitted applications for
instrumentation. In these cases Seer relies on the requests
queued exclusively in the NIC to signal upcoming QoS viola-
tions. In Section 5 we compare the accuracy of the full versus
limited instrumentation, and see that using network queue
depths alone is enough to signal a large fraction of QoS viola-
tions, although smaller than when the full instrumentation is
available. Exclusively polling NIC queues identifies hotspots
caused by routing, incast, failures, and resource saturation,
but misses QoS violations that are caused by performance
and efficiency bugs in the application implementation, such
as blocking behavior between microservices. Signaling such
bugs helps developers better understand the microservices
model, and results in better application design.

Inferring queue lengths: Additionally, there has been re-
cent work on using deep learning to reverse engineer the
number of queued requests in switches across a large net-
work topology [46], when tracing information is incomplete.
Such techniques are also applicable and beneficial for Seer
when the default level of instrumentation is not available.

4.3 Deep Learning in Performance Debugging

A popular way to model performance in cloud systems, es-
pecially when there are dependencies between tasks, are
queueing networks [49]. Although queueing networks are a
valuable tool to model how bottlenecks propagate through

the system, they require in-depth knowledge of application
semantics and structure, and can become overly complex
as applications and systems scale. They additionally cannot
easily capture all sources of contention, such as the OS and
network stack.

Instead in Seer, we take a data-driven, application-agnostic
approach that assumes no information about the structure
and bottlenecks of a service, making it robust to unknown
and changing applications, and relying instead on practi-
cal learning techniques to infer patterns that lead to QoS
violations. This includes both spatial patterns, such as de-
pendencies between microservices, and temporal patterns,
such as input load, and resource contention. The key idea in
Seer is that conditions that led to QoS violations in the past
can be used to anticipate unpredictable performance in the
near future. Seer uses execution traces annotated with QoS
violations and collected over time to train a deep neural net-
work to signal upcoming QoS violations. Below we describe
the structure of the neural network, why deep learning is
well-suited for this problem, and how Seer adapts to changes
in application structure online.

Using deep learning: Although deep learning is not the
only approach that can be used for proactive QoS violation
detection, there are several reasons why it is preferable in this
case. First, the problem Seer must solve is a pattern matching
problem of recognizing conditions that result in QoS viola-
tions, where the patterns are not always known in advance
or easy to annotate. This is a more complicated task than sim-
ply signaling a microservice with many enqueued requests,
for which simpler classification, regression, or sequence la-
beling techniques would suffice [15, 16, 92]. Second, the DNN
in Seer assumes no a priori knowledge about dependencies
between individual microservices, making it applicable to
frequently-updated services, where describing changes is
cumbersome or even difficult for the user to know. Third,
deep learning has been shown to be especially effective in
pattern recognition problems with massive datasets, e.g., in
image or text recognition [10]. Finally, as we show in the
validation section (Sec. 5), deep learning allows Seer to rec-
ognize QoS violations with high accuracy in practice, and
within the opportunity window the cluster manager has to
apply corrective actions.

Configuring the DNN: The input used in the network is
essential for its accuracy. We have experimented with re-
source utilization, latency, and queue depths as input met-
rics. Consistent with prior work, utilization is not a good
proxy for performance [31, 35, 56, 61]. Latency similarly
leads to many false positives, or to incorrectly pinpointing
computationally-intensive microservices as QoS violation
culprits. Again consistent with queueing theory [49] and
prior work [34, 37, 38, 46, 56], per-microservice queue depths
accurately capture performance bottlenecks and pinpoint the
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Figure 9. The deep neural network design in Seer, con-
sisting of a set of convolution layers followed by a set of
long-short term memory layers. Each input and output neu-
ron corresponds to a microservice, ordered in topological
order, from back-end microservices in the top, to front-end
microservices in the bottom.

microservices causing them. We compare against utilization-
based approaches in Section 5. The number of input and
output neurons is equal to the number of active microser-
vices in the cluster, with the input value corresponding to
queue depths, and the output value to the probability for
a given microservice to initiate a QoS violation. Input neu-
rons are ordered according to the topological application
structure, with dependent microservices corresponding to
consecutive neurons to capture hotspot patterns in space. In-
put traces are annotated with the microservices that caused
QoS violations in the past.

The choice of DNN architecture is also instrumental to its
accuracy. There are three main DNN designs that are popular
today: fully connected networks (FC), convolutional neural
networks (CNN), and recurrent neural networks (RNN), es-
pecially their Long Short-Term Memory (LSTM) class. For
Seer to be effective in improving performance predictability,
inference needs to occur with enough slack for the cluster
manager’s action to take effect. Hence, we focus on the more
computationally-efficient CNN and LSTM networks. CNNs
are especially effective at reducing the dimensionality of
large datasets, and finding patterns in space, e.g., in image
recognition. LSTMs, on the other hand, are particularly effec-
tive at finding patterns in time, e.g., predicting tomorrow’s
weather based on today’s measurements. Signaling QoS vi-
olations in a large cluster requires both spatial recognition,
namely identifying problematic clusters of microservices
whose dependencies cause QoS violations and discarding
noisy but non-critical microservices, and temporal recogni-
tion, namely using past QoS violations to anticipate future
ones. We compare three network designs, a CNN, a LSTM,
and a hybrid network that combines the two, using the CNN
first to reduce the dimensionality and filter out microservices

that do not affect end-to-end performance, and then an LSTM
with a SoftMax final layer to infer the probability for each
microservice to initiate a QoS violation. The architecture
of the hybrid network is shown in Fig. 9. Each network is
configured using hyperparameter tuning to avoid overfitting,
and the final parameters are shown in Table 2.

We train each network on a week’s worth of trace data
collected on a 20-server cluster running all end-to-end ser-
vices (for methodology details see Sec. 5) and test it on traces
collected on a different week, after the servers had been
patched, and the OS had been upgraded.

The quantitative com- .
parison of the thrée — 7T
networks is shown in
Fig. 10. The CNN is by B
far the fastest, but also
the worst performing,
since it is not designed
to recognize patterns in
time that lead to QoS vi- QoS Viollsa?i‘;n Detecti?a?\hzxgcurgaii/“(i/o)
olations. The LSTM on
the other hand is espe-
cially effective at captur-
ing load patterns over
time, but is less effective at reducing the dimensionality of
the original dataset, which makes it prone to false positives
due to microservices with many outstanding requests, which
are off the critical path. It also incurs higher overheads for
inference than the CNN. Finally, Seer correctly anticipates
93.45% of violations, outperforming both networks, for a
small increase in inference time compared to LSTM. Given
that most resource partitioning decisions take effect after a
few 100ms, the inference time for Seer is within the window
of opportunity the cluster manager has to take action. More
importantly it attributes the QoS violation to the correct
microservice, simplifying the cluster manager’s task. QoS
violations missed by Seer included four random load spikes,
and a network switch failure which caused high packet drops.

Out of the five end-to-end services, the one most prone
to QoS violations initially was Social Network, first, because
it has stricter QoS constraints than e.g., E-commerce, and
second, due to a synchronous and cyclic communication be-
tween three neighboring services that caused them to enter
a positive feedback loop until saturation. We reimplemented
the communication protocol between them post-detection.
On the other hand, the service for which QoS violations were
hardest to detect was Media Service, because of a faulty mem-
ory bandwidth partitioning mechanism in one of our servers,
which resulted in widely inconsistent memory bandwidth
allocations during movie streaming. Since the QoS violation
only occurred when the specific streaming microservice was
scheduled on the faulty node, it was hard for Seer to collect
enough datapoints to signal the violation.
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SRS

o N A OO

Figure 10. Comparison of
DNN architectures.



Retraining Seer: By default training happens once, and
can be time consuming, taking several hours up to a day for
week-long traces collected on our 20-server cluster (Sec. 5
includes a detailed sensitivity study for training time). How-
ever, one of the main advantages of microservices is that they
simplify frequent application updates, with old microser-
vices often swapped out and replaced by newer modules, or
large services progressively broken down to microservices.
If the application (or underlying hardware) change signifi-
cantly, Seer’s detection accuracy can be impacted. To adjust
to changes in the execution environment, Seer retrains incre-
mentally in the background, using the transfer learning-based
approach in [80]. Weights from previous training rounds are
stored in disk, allowing the model to continue training from
where it last left off when new data arrive, reducing the
training time by 2-3 orders of magnitude. Even though this
approach allows Seer to handle application changes almost in
real-time, it is not a long-term solution, since new weights are
still polluted by the previous application architecture. When
the application changes in a major way, e.g., microservices
on the critical path change, Seer also retrains from scratch
in the background. While the new network trains, QoS vi-
olation detection happens with the incrementally-trained
interim model. In Section 5, we evaluate Seer’s ability to
adjust its estimations to application changes.

4.4 Hardware Monitoring

Once a QoS violation is signaled and a culprit microservice
is pinpointed, Seer uses low-level monitoring to identify the
reason behind the QoS violation. The exact process depends
on whether Seer has access to performance counters.

Private cluster: When Seer has access to hardware events,
such as performance counters, it uses them to determine
the utilization of different shared resources. Note that even
though utilization is a problematic metric for anticipating
QoS violations in a large-scale service, once a culprit mi-
croservice has been identified, examining the utilization of
different resources can provide useful hints to the cluster
manager on suitable decisions to avoid degraded perfor-
mance. Seer specifically examines CPU, memory capacity
and bandwidth, network bandwidth, cache contention, and
storage I/0 bandwidth when prioritizing a resource to adjust.
Once the saturated resource is identified, Seer notifies the
cluster manager to take action.

Public cluster: When Seer does not have access to perfor-
mance counters, it instead uses a set of 10 tunable contentious
microbenchmarks, each of them targeting a different shared
resource [30] to determine resource saturation. For example,
if Seer injects the memory bandwidth microbenchmark in
the system, and tunes up its intensity without an impact
on the co-scheduled microservice’s performance, memory
bandwidth is most likely not the resource that needs to be
adjusted. Seer starts from microbenchmarks corresponding

to core resources, and progressively moves to resources fur-
ther away from the core, until it sees a substantial change in
performance when running the microbenchmark. Each mi-
crobenchmark takes approximately 10ms to complete, avoid-
ing prolonged degraded performance.

Upon identifying the problematic resource(s), Seer notifies
the cluster manager, which takes one of several resource
allocation actions, resizing the Docker container, or using
mechanisms like Intel’s Cache Allocation Technology (CAT)
for last level cache (LLC) partitioning, and the Linux traffic
control’s hierarchical token bucket (HTB) queueing discipline
in qdisc [17, 62] for network bandwidth partitioning.

4.5 System Insights from Seer

Using learning-based, data-driven approaches in systems
is most useful when these techniques are used to gain in-
sight into system problems, instead of treating them as black
boxes. Section 5 includes an analysis of the causes behind
QoS violations signaled by Seer, including application bugs,
poor resource provisioning decisions, and hardware failures.
Furthermore, we have deployed Seer in a large installation of
the Social Network service over the past few months, and its
output has been instrumental not only in guaranteeing QoS,
but in understanding sources of unpredictable performance,
and improving the application design. This has resulted both
in progressively fewer QoS violations over time, and a better
understanding of the design challenges of microservices.

4.6 Implementation

Seer is implemented in 12KLOC of C,C++, and Python. It
runs on Linux and OSX and supports applications in various
languages, including all frameworks the end-to-end services
are designed in. Furthermore, we provide automated patches
for the instrumentation probes for many popular microser-
vices, including NGINX, memcached, MongoDB, Xapian, and all
Sockshop and Go-microservices applications to minimize the
development effort from the user’s perspective.

Seer is a centralized system; we use master-slave mirroring
to improve fault tolerance, with two hot stand-by masters
that can take over if the primary system fails. Similarly, the
trace database is also replicated in the background.
Security concerns: Trace data is stored and processed un-
encrypted in Cassandra. Previous work has shown that the
sensitivity applications have to different resources can leak
information about their nature and characteristics, making
them vulnerable to malicious security attacks [27, 36, 50, 52,
84, 88, 89, 94, 99]. Similar attacks are possible using the data
and techniques in Seer, and are deferred to future work.

5 Seer Analysis and Validation
5.1 Methodology

Server clusters: First, we use a dedicated local cluster with
20, 2-socket 40-core servers with 128GB of RAM each. Each
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Figure 11. Seer’s sensitivity to (a) the size of training
datasets, and (b) the tracing interval.

server is connected to a 40Gbps ToR switch over 10Gbe NICs.
Second, we deploy the Social Network service to Google
Compute Engine (GCE) and Windows Azure clusters with
hundreds of servers to study the scalability of Seer.
Applications: We use all five end-to-end services of Table 1.
Services for now are driven by open-loop workload gener-
ators, and the input load varies from constant, to diurnal,
to load with spikes in user demand. In Section 6 we study
Seer in a real large-scale deployment of the Social Network;
in that case the input load is driven by real user traffic.

5.2 Evaluation

Sensitivity to training data: Fig. 11a shows the detection

accuracy and training time for Seer as we increase the size

of the training dataset. The size of the dots is a function

of the dataset size. Training data is collected from the 20-
server cluster described above, across different load levels,
placement strategies, time intervals, and request types. The

smallest training set size (100MB) is collected over ten min-
utes of the cluster operating at high utilization, while the

largest dataset (1TB) is collected over almost two months of
continuous deployment. As datasets grow Seer’s accuracy

increases, leveling off at 100-200GB. Beyond that point accu-
racy does not further increase, while the time needed for

training grows significantly. Unless otherwise specified, we

use the 100GB training dataset.

Sensitivity to tracing frequency: By default the distributed
tracing system instantaneously collects the latency of every

single user request. Collecting queue depth statistics, on the

other hand, is a per-microservice iterative process. Fig. 11b

shows how Seer’s accuracy changes as we vary the frequency

with which we collect queue depth statistics. Waiting for a

long time before sampling queues, e.g., > 1s, can result in un-
detected QoS violations before Seer gets a chance to process

the incoming traces. In contrast, sampling queues very fre-
quently results in unnecessarily many inferences, and runs

the risk of increasing the tracing overhead. For the remain-
der of this work, we use 100ms as the interval for measuring

queue depths across microservices.

False negatives & false positives: Fig. 12a shows the per-
centage of false negatives and false positives as we vary the
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Figure 12. (a) The false negatives and false positives in Seer
as we vary the inference window. (b) Breakdown to causes
of QoS violations, and comparison with utilization-based
detection, and systems with limited instrumentation.

prediction window. When Seer tries to anticipate QoS viola-
tions that will occur in the next 10-100ms both false positives
and false negatives are low, since Seer uses a very recent
snapshot of the cluster state to anticipate performance unpre-
dictability. If inference was instantaneous, very short predic-
tion windows would always be better. However, given that
inference takes several milliseconds and more importantly,
applying corrective actions to avoid QoS violations takes
10-100s of milliseconds to take effect, such short windows
defy the point of proactive QoS violation detection. At the
other end, predicting far into the future results in significant
false negatives, and especially false positives. This is because
many QoS violations are caused by very short, bursty events
that do not have an impact on queue lengths until a few
milliseconds before the violation occurs. Therefore requiring
Seer to predict one or more seconds into the future means
that normal queue depths are annotated as QoS violations,
resulting in many false positives. Unless otherwise specified
we use a 100ms prediction window.

Comparison of debugging systems: Fig. 12b compares
Seer with a utilization-based performance debugging system
that uses resource saturation as the trigger to signal a QoS
violation, and two systems that only use a fraction of Seer’s
instrumentation. App-only exclusively uses queues mea-
sured via application instrumentation (not network queues),
while Network-only uses queues in the NIC, and ignores
application-level queueing. We also show the ground truth
for the total number of upcoming QoS violations (96 over a
two-week period), and break it down by the reason that led
to unpredictable performance.

A large fraction of QoS violations are due to application-
level inefficiencies, including correctness bugs, unnecessary
synchronization and/or blocking behavior between microser-
vices (including two cases of deadlocks), and misconfigured
iptables rules, which caused packet drops. An equally large
fraction of QoS violations are due to compute contention,
followed by contention in the network, cache and memory
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Figure 13. Seer retraining incrementally after each time the
Social Network service is updated.

contention, and finally disk. Since the only persistent mi-
croservices are the back-end databases, it is reasonable that
disk accounts for a small fraction of overall QoS violations.

Seer accurately follows this breakdown for the most part,
only missing a few QoS violations due to random load spikes,
including one caused by a switch failure. The App-only sys-
tem correctly identifies application-level sources of unpre-
dictable performance, but misses the majority of system-
related issues, especially in uncore resources. On the other
hand, Network-only correctly identifies the vast majority
of network-related issues, as well as most of the core- and
uncore-driven QoS violations, but misses several application-
level issues. The difference between Network-only and Seer
is small, suggesting that one could omit the application-level
instrumentation in favor of a simpler design. While this sys-
tem is still effective in capturing QoS violations, it is less
useful in providing feedback to application developers on
how to improve their design to avoid QoS violations in the fu-
ture. Finally, the utilization-based system behaves the worst,
missing most violations not caused by CPU saturation.

Out of the 89 QoS violations Seer detects, it notifies the
cluster manager early enough to avoid 84 of them. The QoS
violations that were not avoided correspond to application-
level bugs, which cannot be easily corrected online. Since
this is a private cluster, Seer uses utilization metrics and
performance counters to identify problematic resources.
Retraining: Fig. 13 shows the detection accuracy for Seer,
and the tail latency for each end-to-end service, over a period
of time during which Social Network is getting frequently and
substantially updated. This includes new microservices be-
ing added to the service, such as the ability to place an order
from an ad using the orders microservice of E-commerce,
or the back-end of the service changing from MongoDB to

Cassandra, and the front-end switching from nginx to the
node.js front-end of E-commerce. These are changes that fun-
damentally affect the application’s behavior, throughput, la-
tency, and bottlenecks. The other services remain unchanged
during this period (Banking was not active during this time,
and is omitted from the graph). Blue dots denote correctly-
signaled upcoming QoS violations, and red X denote QoS
violations that were not detected by Seer. All unidentified
QoS violations coincide with the application being updated.
Shortly after the update Seer incrementally retrains in the
background, and starts recovering its accuracy until another
major update occurs. Some of the updates have no impact on
either performance or Seer’s accuracy, either because they
involve microservices off the critical path, or because they
are insensitive to resource contention.

The bottom figure shows that unidentified QoS violations
indeed result in performance degradation for Social Network,
and in some cases for the other end-to-end services, if they
are sharing physical resources with Social Network, on an
oversubscribed server. Once retraining completes the per-
formance of the service(s) recovers. The longer Seer trains
on an evolving application, the more likely it is to correctly
anticipate its future QoS violations.

6 Large-Scale Cloud Study
6.1 Seer Scalability

We now deploy our Social Network service on a 100-server
dedicated cluster on Google Compute Engine (GCE), and
use it to service real user traffic. The application has 582
registered users, with 165 daily active users, and has been
deployed for a two-month period. The cluster on average
hosts 386 single-concerned containers (one microservice per
container), subject to some resource scaling actions by the
cluster manager, based on Seer’s feedback.

Accuracy remains
high for Seer, con- 10°
sistent with the 104} I Native
small-scale exper- 1031 5 Eralianave
iments. Inference =102
time, however, in- o 10
creases substantially E 10°}
from 11.4ms for 101
the 20-server clus- 102!
ter to 54ms for the 103 |
100-server GCE set- Training Inference

ting. Even though
this is still suffi-
cient for many re-
source allocation decisions, as the application scales further,
Seer’s ability to anticipate a QoS violation within the cluster
manager’s window of opportunity diminishes.

Over the past year multiple public cloud providers have ex-
posed hardware acceleration offerings for DNN training and

Figure 14. Seer training and infer-
ence with hardware acceleration.
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work is responsible for.

inference, either using a special-purpose design like the Ten-
sor Processing Unit (TPU) from Google [55], or using recon-
figurable FPGAs, like Project Brainwave from Microsoft [25].
We offload Seer’s DNN logic to both systems, and quantify
the impact on training and inference time, and detection ac-
curacy !. Fig. 14 shows this comparison for a 200GB training
dataset. Both the TPU and Project Brainwave dramatically
outperform our local implementation, by up to two orders of
magnitude. Between the two accelerators, the TPU is more
effective in training, consistent with its design objective [55],
while Project Brainwave achieves faster inference. For the
remainder of the paper, we run Seer on TPUs, and host the
Social Network service on GCE.

6.2 Source of QoS Violations

We now examine which microservice is the most common
culprit for a QoS violation. Fig. 15 shows the number of QoS
violations caused by each service over the two-month period.
The most frequent culprits by far are the in-memory caching
tiers in memcached, and Thrift services with high request
fanout, such as composePost, readPost, and login. memcached
is a justified source of QoS violations, since it is on the criti-
cal path for almost all query types, and it is additionally very
sensitive to resource contention in compute and to a lesser
degree cache and memory. Microservices with high fanout
are also expected to initiate QoS violations, as they have to
synchronize multiple inbound requests before proceeding. If
processing for any incoming requests is delayed, end-to-end
performance is likely to suffer. Among these QoS violations,
most of memcached’s violations were caused by resource con-
tention, while violations in Thrift services were caused by
long synchronization times.

6.3 Seer’s Long-Term Impact on Application Design

Seer has now been deployed in the Social Network cluster
for over two months, and in this time it has detected 536
upcoming QoS violations (90.6% accuracy) and avoided 495
(84%) of them. Furthermore, by detecting recurring patterns

1Before running on TPUs, we reimplemented our DNN in Tensorflow. We
similarly adjust the DNN to the currently-supported designs in Brainwave.
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Figure 16. QoS violations each microservice in Social Net-
work is responsible for.

that lead to QoS violations, Seer has helped the application
developers better understand bugs and design decisions that
lead to hotspots, such as microservices with a lot of back-
and-forth communication between them, or microservices
forming cyclic dependencies, or using blocking primitives.
This has led to a decreasing number of QoS violations over
the two month period (seen in Fig. 16), as the application
progressively improves. In days 22 and 23 there was a cluster
outage, which is why the reported violations are zero. Sys-
tems like Seer can be used not only to improve performance
predictability in complex cloud systems, but to help users
better understand the design challenges of microservices, as
more services transition to this application model.

7 Conclusions

Cloud services increasingly move away from complex mono-
lithic designs, and adopt the model of specialized, loosely-
coupled microservices. We presented Seer, a data-driven
cloud performance debugging system that leverages practi-
cal learning techniques, and the massive amount of tracing
data cloud systems collect to proactively detect and avoid
QoS violations. We have validated Seer’s accuracy in con-
trolled environments, and evaluated its scalability on large-
scale clusters on public clouds. We have also deployed the
system in a cluster hosting a social network with hundreds
of users. In all scenarios, Seer accurately detects upcoming
QoS violations, improving responsiveness and performance
predictability. As more services transition to the microser-
vices model, systems like Seer provide practical solutions
that can navigate the increasing complexity of the cloud.
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