
Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng,

Yuan He, Meghna Pancholi, and Christina Delimitrou

Cornell University

ASPLOS – April 15th 2019

SEER: LEVERAGING BIG DATA TO NAVIGATE THE COMPLEXITY

OF PERFORMANCE DEBUGGING IN CLOUD MICROSERVICES

2

 From monoliths to microservices:

 Monoliths  all functionality in a single service

 Microservices  many single-concerned, loosely-coupled services

Executive Summary

3

 From monoliths to microservices:

 Monoliths  all functionality in a single service

 Microservices  many single-concerned, loosely-coupled services

Executive Summary

4

 From monoliths to microservices:

 Monoliths  all functionality in a single service

 Microservices  many single-concerned, loosely-coupled services

 Microservices implications:

 Modularity, specialization, faster development

 Performance unpredictability (us-level QoS), cascading QoS violations  A-posteriori

debugging

Executive Summary

5

 From monoliths to microservices:

 Monoliths  all functionality in a single service

 Microservices  many single-concerned, loosely-coupled services

 Microservices implications:

 Modularity, specialization, faster development

 Performance unpredictability (us-level QoS), cascading QoS violations  A-posteriori

debugging

 Seer: Proactive performance debugging for interactive microservices

 Leverage DL to anticipate & diagnose root cause of QoS violations

 >90% accuracy on large-scale end-to-end microservices deployments

 Avoid unpredictable performance

 Offer insight to improve microservices design and deployment

Executive Summary

6

Motivation

webserver databases

ads

posts

photos

recommender

7

Motivation

webserver

databases

recommender

ads

photos

posts

8

Motivation

webserver

databases

recommender

ads

photos

posts

ads

posts

photos

recommender

webserver databases

Monolith Microservices

9

 Advantages of microservices:

 Modular  easier to understand

 Speed of development & deployment

 On-demand provisioning, elasticity

 Language/framework heterogeneity

Motivation

webserver

databases

recommender

ads

photos

posts

ads

posts

photos

recommender

webserver databases

Monolith Microservices

10

 Complicate cluster management & performance debugging

 Dependencies cause cascading QoS violations

 Difficult to isolate root cause of performance unpredictability

Performance Debugging Challenges

Netflix Twitter Amazon

11

 Complicate cluster management & performance debugging

 Dependencies cause cascading QoS violations

 Difficult to isolate root cause of performance unpredictability

Performance Debugging Challenges

Netflix

Twitter

Amazon

12

Performance Debugging Challenges

Netflix Amazon

Social Network

 Dependencies cause cascading QoS violations

 Empirical performance debugging  too

slow, bottlenecks propagate

 Long recovery times for performance

13

Performance Debugging Challenges

Netflix Amazon

Social Network

 Dependencies cause cascading QoS violations

 Empirical performance debugging  too

slow, bottlenecks propagate

 Long recovery times for performance

14

Performance Debugging Challenges

Netflix Amazon

Social Network

 Dependencies cause cascading QoS violations

 Empirical performance debugging  too

slow, bottlenecks propagate

 Long recovery times for performance

15

Performance Debugging Challenges

Netflix Amazon

Social Network

 Dependencies cause cascading QoS violations

 Empirical performance debugging  too

slow, bottlenecks propagate

 Long recovery times for performance

16

Performance Debugging Challenges

Netflix Amazon

Social Network

 Dependencies cause cascading QoS violations

 Empirical performance debugging  too

slow, bottlenecks propagate

 Long recovery times for performance

17

Performance Debugging Challenges

Netflix Amazon

QoS met

Social Network

 Dependencies cause cascading QoS violations

 Empirical performance debugging  too

slow, bottlenecks propagate

 Long recovery times for performance

18

Performance Debugging Challenges

Netflix Amazon

QoS violated

Social Network

 Dependencies cause cascading QoS violations

 Empirical performance debugging  too

slow, bottlenecks propagate

 Long recovery times for performance

19

 Dependencies cause cascading QoS violations

 Empirical performance debugging  too

slow, bottlenecks propagate

 Long recovery times for performance

Performance Debugging Challenges

AmazonNetflix

Social Network

Demo: http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo_motivation.mp4

http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo_motivation.mp4

20

 Use ML to identify the culprit (root cause) of an upcoming QoS violation

 Leverage the massive amount of distributed traces collected over time

 Use targeted per-server hardware probes to determine the cause of the QoS violation

 Inform cluster manager to take proactive action & prevent QoS violation

 Need to predict 100s of msec – a few sec in the future

Seer: Proactive Performance Debugging

Cluster manager

TraceDB

Seer

21

 Two-level tracing

 Distributed RPC-level tracing

 Similar to Dapper, Zipkin

 Per-microservice latencies

 Inter- and intra-microservice queue
lengths

 Tracing overhead: <0.1% in QPS,
<0.2% in 99th %ile latency

 Per-node hardware monitoring

 Targeted on nodes with
problematic microservices

 Perf counters & contentious
microbenchmarks

Instrumentation & Tracing

TCP RX Epoll
Nginx

proc
TCP TX

LBC

DB

DB

DB

DB

DB

DB

Front-end

Logic tiers Back-end

Client

22

 Two-level tracing

 Distributed RPC-level tracing

 Similar to Dapper, Zipkin

 Per-microservice latencies

 Inter- and intra-microservice queue
lengths

 Tracing overhead: <0.1% in QPS,
<0.2% in 99th %ile latency

 Per-node hardware monitoring

 Targeted on nodes with
problematic microservices

 Perf counters & contentious
microbenchmarks

Instrumentation & Tracing

TCP RX Epoll
Nginx

proc
TCP TX

LBC

DB

DB

DB

DB

DB

DB

Front-end

Logic tiers Back-end

Client

23

 Two-level tracing

 Distributed RPC-level tracing

 Similar to Dapper, Zipkin

 Per-microservice latencies

 Inter- and intra-microservice queue
lengths

 Tracing overhead: <0.1% in QPS,
<0.2% in 99th %ile latency

 Per-node hardware monitoring

 Targeted on nodes with
problematic microservices

 Perf counters & contentious
microbenchmarks

Instrumentation & Tracing

TCP RX Epoll
Nginx

proc
TCP TX

LBC

DB

DB

DB

DB

DB

DB

Front-end

Logic tiers Back-end

Client

24

 Two-level tracing

 Distributed RPC-level tracing

 Similar to Dapper, Zipkin

 Per-microservice latencies

 Inter- and intra-microservice queue
lengths

 Tracing overhead: <0.1% in QPS,
<0.2% in 99th %ile latency

 Per-node hardware monitoring

 Targeted on nodes with
problematic microservices

 Perf counters & contentious
microbenchmarks

Instrumentation & Tracing

TCP RX Epoll
Nginx

proc
TCP TX

LBC

DB

DB

DB

DB

DB

DB

Front-end

Logic tiers Back-end

Client

25

 Two-level tracing

 Distributed RPC-level tracing

 Similar to Dapper, Zipkin

 Per-microservice latencies

 Inter- and intra-microservice queue
lengths

 Tracing overhead: <0.1% in QPS,
<0.2% in 99th %ile latency

 Per-node hardware monitoring

 Targeted on nodes with
problematic microservices

 Perf counters & contentious
microbenchmarks

Instrumentation & Tracing

TCP RX Epoll
Nginx

proc
TCP TX

LBC

DB

DB

DB

DB

DB

DB

Front-end

Logic tiers Back-end

Client

26

DL for Cloud Performance Debugging

Output
signal

 Why?

 Architecture-agnostic

 Adjusts to changes over time

 High accuracy, good scalability & fast inference (within window of opportunity)

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

27

DL for Cloud Performance Debugging

Output
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

28

DL for Cloud Performance Debugging

 Container

utilization

Output
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

Input
signal

29

DL for Cloud Performance Debugging

Output
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

Input
signal

 Container

utilization

 Latency

30

DL for Cloud Performance Debugging

Output
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

Input
signal

 Container

utilization

 Latency

 Queue

length

31

DL for Cloud Performance Debugging

 Container

utilization

 Latency

 Queue

length

Output
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

Input
signal

32

DL for Cloud Performance Debugging

 Container

utilization

 Latency

 Queue

length

Output
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

Input
signal

Dimensionality

reduction

33

DL for Cloud Performance Debugging

 Container

utilization

 Latency

 Queue

length

Output
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

Input
signal

Dimensionality

reduction

Near-future

prediction

34

DL for Cloud Performance Debugging

 DNN Configuration

 CNN: Fast, but cannot effectively predict future

 LSTM: Higher accuracy, but affected by noisy, non-critical microservices

 Hybrid network: Highest accuracy, without significantly higher overhead

Output
signal

Input
signal

Probability
that a

microservice
will initiate a
QoS violation

in the near
future

 Queue

length

35

 Training once: slow (hours - days)

 Across load levels, load distributions, request types

 Annotated queue traces  inject microbenchmarks to force controlled QoS violations

 Weight/bias inference with SGD

 Incremental retraining & dynamically expanding/shrinking in the background

 Inference: continuously streaming traces

 20-server dedicated heterogeneous cluster

 Different server configurations

 10s of cores, >100GB RAM per server

 4 end-to-end applications  ~30-40 unique microservices each

 Social Network, Media Service, E-commerce Site, Banking System

Methodology

36

 Social Network

End-to-end Microservices

37

 Social Network

End-to-end Microservices

38

 Social Network

End-to-end Microservices

39

 Social Network

End-to-end Microservices

40

Validation

91% accuracy in signaling upcoming QoS violations

88% accuracy in attributing QoS violation to correct microservice

 50GB input training dataset

 Accuracy levels off thereafter

 50ms tracing sampling interval

 No benefit from finer-grain tracing

41

Validation

91% accuracy in signaling upcoming QoS violations

88% accuracy in attributing QoS violation to correct microservice

 50GB input training dataset

 Accuracy levels off thereafter

 50ms tracing sampling interval

 No benefit from finer-grain tracing

42

Validation

91% accuracy in signaling upcoming QoS violations

88% accuracy in attributing QoS violation to correct microservice

 50GB input training dataset

 Accuracy levels off thereafter

 50ms tracing sampling interval

 No benefit from finer-grain tracing

43

 Tracing interval < 500ms 

low accuracy

 Tracing interval > 100ms 

no further improvement

 Large increase in accuracy

until ~50GB training set

 Levels off afterwards

 Large increase in training

time after 50GB

Sensitivity Analysis

44

 Tracing interval < 500ms 

low accuracy

 Tracing interval > 100ms 

no further improvement

 Large increase in accuracy

until ~50GB training set

 Levels off afterwards

 Large increase in training

time after 50GB

Sensitivity Analysis

45

 Tracing interval < 500ms 

low accuracy

 Tracing interval > 100ms 

no further improvement

 Large increase in accuracy

until ~50GB training set

 Levels off afterwards

 Large increase in training

time after 50GB

Sensitivity Analysis

46

 Identify cause of QoS violation

 Private cluster: performance counters & utilization monitors

 Public cluster: contentious microbenchmarks

 Adjust resource allocation

 RAPL (fine-grain DVFS) & scale-up for CPU contention

 Cache partitioning (CAT) for cache contention

 Memory capacity partitioning for memory contention

 Network bandwidth partitioning (HTB) for net contention

 Storage bandwidth partitioning for I/O contention

 Application level bugs

 Human needs to intervene

Avoiding QoS Violations

47

48

Front

end

Front

end

49

Front

end

Logic tiers Front

end

Logic tiers

50

Front

end

Logic tiers Back

end
Front

end

Logic tiers Back

end

51

Queue

52

CPUQueue

53

CPUQueue

54

CPUQueue

QoS met

55

CPUQueue

QoS violated

56

Demo: http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo.mp4

Demo

http://www.csl.cornell.edu/~delimitrou/2019.asplos.seer.demo.mp4

57

Using ML to Design Better Cloud Systems

 Large-scale Social Network deployment (~600 users, ~2 months deployment)

 Offload Seer on Google TPU v2  24x-118x improvement in training and inference

 Several bugs found (blocking RPCs, livelocks, shared data structs, cyclic dependencies,

insufficient resources, etc.)

 Fewer QoS violations over time

58

 Microservices become increasingly popular

 Traditional performance debugging techniques do not scale and

introduce long recovery times

 Seer leverages DL to anticipate QoS violations & find their root causes

 >90% detection accuracy, avoids 86% of QoS violations

 Provides insight on how to better design and deploy complex microservices

 Practical solutions for systems whose scale make previous empirical

solutions impractical

Conclusions

59

Questions?

 Microservices become increasingly popular

 Traditional performance debugging techniques do not scale and

introduce long recovery times

 Seer leverages DL to anticipate QoS violations & find their root causes

 >90% detection accuracy, avoids 86% of QoS violations

 Provides insight on how to better design and deploy complex microservices

 Practical solutions for systems whose scale make previous empirical

solutions impractical

60

Questions?

Thank you!

 Microservices become increasingly popular

 Traditional performance debugging techniques do not scale and

introduce long recovery times

 Seer leverages DL to anticipate QoS violations & find their root causes

 >90% detection accuracy, avoids 86% of QoS violations

 Provides insight on how to better design and deploy complex microservices

 Practical solutions for systems whose scale make previous empirical

solutions impractical

