Leveraging Deep Learning to Improve Performance Predictability in Cloud
Microservices with Seer

Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna Pancholi, and Christina Delimitrou
Cornell University
{yg397, yz2297, sh2442, dc924, yh772, mp832, delimitrou } @cornell.edu

Abstract

Performance unpredictability is a major roadblock towards
cloud adoption, and has performance, cost, and revenue ram-
ifications. Predictable performance is even more critical as
cloud services transition from monolithic designs to microser-
vices. Detecting QoS violations after they occur in systems
with microservices results in long recovery times, as hotspots
propagate and amplify across dependent services.

In this work we discuss how machine learning can be used
to proactively detect upcoming QoS violations be framing
performance debugging as a pattern matching problem. We
present Seer, an online cloud performance debugging sys-
tem that leverages the massive amount of tracing data cloud
systems collect to learn spatial and temporal patterns that
translate to QoS violations. Seer combines lightweight dis-
tributed RPC-level tracing, with detailed low-level hardware
monitoring to signal an upcoming QoS violation, and diag-
nose the source of unpredictable performance. We validate
Seer’s accuracy in signaling upcoming QoS violations both
in controlled local and large-scale public clusters. Adopting
data-driven approaches like Seer offers insights on how to
better architect microservices to achieve predictable perfor-
mance, providing practical solutions for systems whose scale
make previous empirical solutions impractical.

1. Introduction

The last few years have seen a significant shift in the way
cloud services are designed, from monolithic applications that
encompass the entire functionality in a single codebase, to
large graphs of single-concerned, loosely-coupled microser-
vices [5, 21]. Microservices are appealing for several reasons,
including accelerating development and deployment, isolating
errors can be isolated in specific tiers, and enabling a rich
software ecosystem, as each microservice is written in the
language or programming framework that best suits its needs.

At the same time microservices introduce several new sys-
tem challenges. Specifically, even though the quality-of-
service (QoS) requirements of the end-to-end application are
similar for microservices and monoliths, the tail latency re-
quired for each individual microservice is much stricter than
for traditional cloud applications [28, 26, 15, 29, 27, 19, 20,
21]. This puts increased pressure on delivering predictable
performance, as dependencies between microservices mean

34

that a single misbehaving microservice can cause cascading
QoS violations across the system.

Fig. 1 shows three real
large-scale production de-
ployments of microser-
vices [5, 1]. The perime-
ter of the circle (or sphere
surface) shows the dif-
ferent microservices, and
edges show dependencies
between them. We also
show these dependencies
for Social Network, one
of the large-scale services
used in the evaluation of
this work (see Sec. 3). Un-
fortunately the complex-
ity of modern cloud ser-
vices means that manually determining the impact of each
pair-wise dependency on end-to-end QoS, or relying on the
user to provide this information is impractical.

Social Network

Amazon

Figure 1: Microservices
graphs in three large cloud
providers [5, 1], and our
Social Network service.

Apart from software heterogeneity, datacenter hardware is
also becoming increasingly heterogeneous as special-purpose
architectures [24, 9] and FPGAs are used to accelerate critical
operations [8, 11]. This adds to the existing server heterogene-
ity from incremental server replacement [27, 14], and further
complicates the effort to guarantee predictable performance.

Even though there has been extensive work on tracing, mon-
itoring and performance debugging systems which help detect
and correct unpredictable performance, until their actions take
effect, performance suffers. For monolithic services this pri-
marily affects the service experiencing the QoS violation itself,
and potentially services it is sharing physical resources with.
With microservices, however, a posteriori QoS violation de-
tection is more impactful, as hotspots propagate and amplify
across dependent services, forcing the system to operate in a
degraded state for longer, until all oversubscribed tiers have
been relieved, and all accumulated queues have drained. Fig. 2
shows the impact of reacting to a QoS violation after it occurs
for the Social Network application with several hundred users
running on 20 two-socket, high-end servers. Even though the
scheduler scales out all oversubscribed tiers once the violation
occurs, it takes several seconds for the service to return to

nominal operation. There are two reasons for this; first, by
the time one tier has been upsized, its neighboring tiers have
built up request backlogs, which cause them to saturate in
turn. Second, utilization is not always a good proxy for tail
latency and/or QoS violations [26, 6, 12]. A common way
to address such QoS violations is rate limiting [33], which
constrains the incoming load, until hotspots dissipate. This
restores performance, but degrades the end user’s experience,
as a fraction of input requests is dropped.

In our recent ASPLOS’19
paper [22] we presented Seer,

’ = A Posteriori Seer‘

Violation QoS

g oo eiected (e e a proactive cloud performance
2% debugging system that lever-
© 80 ages practical deep learning tech-
E, 7 niques to diagnose upcoming
2 60 QoS violations in a scalable and
g% ' online manner. First, Seer is
3 45Tt zo 5o 30 proactive to avoid the long recov-

Time (sec) ery periods of a posteriori QoS
Figure 2: Performance violation detection. Second, it

with a posteriori debug-
ging and with Seer.

uses the massive amount of trac-
ing data cloud systems collect
over time to learn spatial and temporal patterns that lead to
QoS violations early enough to avoid them altogether. Seer
includes a lightweight, distributed RPC-level tracing system,
based on Apache Thrift’s timing interface, to collect end-to-
end traces of request execution, and track per-microservice
outstanding requests. Seer uses these traces to train a deep
neural network to recognize imminent QoS violations, and
identify the microservice(s) that initiated them. Once Seer
identifies the culprit of a QoS violation, it uses detailed per-
node hardware monitoring to determine the reason behind the
degraded performance, and provide the cluster scheduler with
recommendations on how to avoid it.

We evaluated Seer both in dedicated local clusters of 20 two-
socket servers, and on large-scale clusters on Google Compute
Engine (GCE) with a set of end-to-end interactive applications
built with microservices, including the Social Network above.
In our local cluster, Seer correctly identifies upcoming QoS
violations in 93% of cases, and correctly pinpoints the mi-
croservice initiating the violation 89% of the time. To combat
long inference times as clusters scale, we offload the DNN
pipeline to Google’s Tensor Processing Units (TPUs) when
running on GCE [24], and show up to orders of magnitude of
improvement for both training and inference.

Finally, we deploy Seer in a large-scale installation of the
Social Network service with several hundred users, and show
that Seer not only correctly identifies 90.6% of upcoming
QoS violations and avoids 84% of them, but also helps the
application’s developers identify design bugs, resulting in
fewer QoS violations over time. As cloud application and
hardware complexity continues to grow, data-driven systems
like Seer can offer practical solutions for systems whose scale
make empirical approaches intractable.

35

2. Related Work

Performance unpredictability is a well-studied problem in
public clouds that stems from platform heterogeneity, resource
interference, software bugs and load variation [15, 16, 17, 26].

There is extensive work on monitoring systems that has
shown that execution traces can help diagnose performance,
efficiency, and even security problems in large-scale sys-
tems [18, 10, 32, 29]. For example, X-Trace is a tracing
framework that provides a comprehensive view of the behavior
of services running on large-scale, potentially shared clusters.
X-Trace supports several protocols and software systems, and
has been deployed in several real-world scenarios, including
DNS resolution, and a photo-hosting site [18]. The Mystery
Machine, on the other hand, leverages the massive amount of
monitoring data cloud systems collect to determine the causal
relationship between different requests [10]. Cloudseer serves
a similar purpose, building an automaton for the workflow
of each task based on normal execution, and then compares
against this automaton at runtime to determine if the workflow
has diverged from its expected behavior [34]. Finally, there
are several systems, including Dapper [32], GWP [30], and
Zipkin [4] which provide the tracing infrastructure for large-
scale services at Google and Twitter, respectively. Dapper
and Zipkin trace distributed user requests at RPC granularity,
while GWP focuses on low-level hardware monitoring.

Root cause analysis of performance abnormalities in the
cloud has also gained increased attention over the past few
years, as the number of interactive, latency-critical services
hosted in cloud systems has increased. Jayathilaka et al. [23],
for example, developed Roots, a system that automatically
identifies the root cause of performance anomalies in web
applications deployed in Platform-as-a-Service (PaaS) clouds.
Roots tracks events within the PaaS cloud using a combination
of metadata injection and platform-level instrumentation.

Even though this work does not specifically target interac-
tive, latency-critical microservices, or applications of similar
granularity, such examples provide promising evidence that
data-driven performance diagnostics can improve a large-scale
system’s ability to identify performance anomalies, and ad-
dress them to meet its performance guarantees.

3. End-to-End Applications with Microservices

We motivate and evaluate Seer with a set of new end-to-
end, interactive services built with microservices. Even
though there are open-source microservices that can serve
as components of a larger application, such as nginx,
memcached, MongoDB, Xapian, and RabbitMQ, there are cur-
rently no publicly-available end-to-end microservices appli-
cations, with the exception of a few simple architectures, like
Go-microservices [2], and Sockshop [3]. We design four
end-to-end services implementing a Social Network, a Media
Service, an E-commerce Site, and a Banking System. Starting
from the Go-microservices architecture [2], we also develop

Service Communication Unique Per-language LoC breakdown
Protocol Microservices (end-to-end service)

Social Network RPC 36 34% C, 23% C++, 18% Java, 7% node, 6% Python, 5% Scala, 3% PHP, 2% JS, 2% Go
""" Media Service ~~~~ RPC 38 77730% C,21% C++, 20% Java, 10% PHP, 8% Scala, 5% node, 3% Python, 3% JS
" E-commerce Site REST 41 21% Java, 16% C++, 15% C, 14% Go, 10% IS, 7% node, 5% Scala, 4% HTML, 3% Ruby
""" Banking System ~ RPC 28 299 C,25% Javascript, 16% Java, 16% nodejs, 11% C++, 3% Python
"Hotel Reservations [2] RPC 0 as ey 89% Go, 7% HTML, 4% Python T

Table 1: Characteristics and code composition of each end-to-end microservices-based application.

Social Network
Service

- ‘urIShorten\
‘ ‘

Figure 3: Dependency graph between the microservices of
the end-to-end Social Network application.

an end-to-end Hotel Reservation system. Services are de-
signed to be representative of frameworks used in production
systems, modular, and easily reconfigurable. The applications
and tracing infrastructure are described in more detail in [21].

Table 1 briefly shows the characteristics of each end-to-end
application, including its communication protocol, the number
of unique microservices it includes, and its breakdown by
programming language and framework. Unless otherwise
noted, all microservices are deployed in Docker containers.
Below, we briefly describe the scope and functionality of the
Social Network applications; the remaining services also have
similar structure and granularity.

3.1. Social Network

Scope: The end-to-end service implements a broadcast-style
social network with uni-directional follow relationships.

Functionality: Fig. 3 shows the architecture of the end-to-
end service. Users (client) send requests over http, which
first reach a load balancer, implemented with nginx, which
selects a specific webserver is selected, also in nginx. Users
can create posts embedded with text, media, links, and tags
to other users, which are then broadcasted to all their follow-
ers. Users can also read, favorite, and share posts, as well as
reply publicly, or send a direct message to another user. The
application also includes machine learning plugins, such as
ads and user recommender engines [7], a search service using
Xapian, and microservices that allow users to follow, unfol-
low, or block other accounts. Inter-microservice messages use
Apache Thrift RPCs. The service’s backend uses memcached
for caching, and MongoDB for persistently storing posts, user

36

profiles, media, and user recommendations. This service is
broadly deployed at Cornell and elsewhere, and currently has
several hundred users. We use this installation to test the
effectiveness and scalability of Seer in Section 6.

4. Seer Design

4.1. Overview

Fig. 4 shows the high-level architecture of the system. Seer is
an online performance debugging system for cloud systems
hosting interactive, latency-critical services. Even though we
are focusing our analysis on microservices, where the impact
of QoS violations is more severe, Seer is also applicable to
general cloud services, and traditional multi-tier or Service-
Oriented Architecture (SOA) workloads.

First, Seer uses a lightweight, distributed RPC-level trac-
ing system, which collects end-to-end execution traces for
each user request, including per-tier latency and outstanding
requests, associates RPCs belonging to the same end-to-end re-
quest, and aggregates them to a centralized Cassandra database
(TraceDB). Traces are used to train Seer to recognize patterns
in space (between microservices) and time that lead to QoS
violations. At runtime, Seer consumes real-time streaming
traces to infer whether there is an imminent QoS violation.

Once problematic microservices have been isolated, Seer
uses its lower tracing level, to identify the reason behind the
QoS violation. It also uses this information to provide the
cluster manager with recommendations on how to avoid the
degraded performance altogether. Using two specialized trac-
ing levels instead of collecting detailed low-level traces for
all active microservices ensures that the distributed tracing
is lightweight enough to track all active services in the sys-
tem, and that detailed low-level hardware tracing is only used
on-demand, for microservices likely to cause disruptions.

4.2. Distributed Tracing

A major challenge with microservices is that one cannot sim-
ply rely on the client to report performance, as with traditional
client-server applications. We have developed a distributed
tracing system for Seer, similar in design to Dapper [32] and
Zipkin [4] that records per-microservice latencies, using the
Thrift timing interface. We additionally track the number of
requests queued in each microservice (outstanding requests),
since queue lengths are highly correlated with performance
and QoS violations [25]. In all cases, the overhead from trac-
ing without request sampling is negligible, less than 0.1% on

Cluster Manager

}_

Adjust
resource
allocation

3 Client

3 Microservice

Seer

Figure 4: Overview of Seer’s operation.

end-to-end latency, and less than 0.15% on throughput (QPS),
which is tolerable for such systems [32, 10, 30].

4.3. Deep Learning in Performance Debugging

A popular way to model performance in cloud systems, espe-
cially when there are dependencies between tasks, are gueue-
ing networks. Although queueing networks are a valuable
tool to model how bottlenecks propagate through the system,
they require in-depth knowledge of application semantics and
structure, and can become overly complex as applications and
systems scale. They additionally cannot easily capture all
sources of contention, such as the OS and network stack.

Instead in Seer, we take a data-driven approach that assumes
no information about the structure and characteristics of a ser-
vice, making it robust to unknown and changing applications.
Seer relies on practical learning techniques that identify pat-
terns that lead to QoS violations. This includes both spatial
patterns, such as dependencies between microservices, and
temporal patterns, such as input load, and resource contention.
The key idea in Seer is that conditions that led to QoS vi-
olations in the past can be used to recognize unpredictable
performance in the near future. Below we describe the struc-
ture of the neural network, and how Seer adapts to changes in
application structure online.

Configuring the DNN: The choice of DNN architecture is
also instrumental to its accuracy. The number of input and out-
put neurons correspond to the number of active microservices
ordered according to their dependencies from back- to front-
end to capture spatial patterns between neighboring microser-
vices. Signaling QoS violations in a large cluster requires
both spatial recognition, namely identifying problematic clus-
ters of microservices and discarding noisy but non-critical
microservices, for which CNNs are well-suited, and temporal
recognition, namely using past QoS violations to anticipate fu-
ture ones, for which LSTM networks are well-fit. We compare
three network designs, a CNN, an LSTM, and a hybrid network
that combines the two, using the CNN first to reduce the di-
mensionality and filter out microservices that do not affect
end-to-end performance, and then an LSTM with a SoftMax
final layer to infer the probability for each microservice to ini-
tiate a QoS violation. The architecture of the hybrid network

37

’g_ Dropout o
°|— [) I g
5] LST™M LST™ a
g|—m ® o 2
2 @
S| ® O 5w LsTM %
-
g{ —m o () E
LST™M LST™ LSTM Ly
§|m o o = 3
El—m () o]
2 LST™M LST™ g
S| e @
S <
g ® 5
wv Q
g —u o LST™ LSTM =2
2 - \d]
> L ;oL J e
* CNN LSTM SoftMax

Figure 5: The DNN in Seer, consisting of a set of convolu-
tion layers followed by a set of long short-term memory layers.
Each input and output neuron corresponds to a microservice,
ordered in topological order, from back-end to front-end.

is shown in Fig. 5. Each network is configured using hyperpa-
rameter tuning to avoid overfitting. We train each network on
a week’s worth of trace data collected on a 20-server cluster
running all end-to-end services and test it on traces collected
on a different week, after the servers had been patched, and
the OS had been upgraded.

The quantitative comparison of the three networks is shown
in Fig. 6a. The CNN is by far the fastest, but also the worst
performing, since it is not designed to recognize patterns in
time. The LSTM, on the other hand, is especially effective at
capturing load patterns over time, but is less effective at reduc-
ing the dimensionality of the original dataset, which makes
it prone to false positives due to non-critical microservices
with many outstanding requests. Finally, Seer correctly an-
ticipates 93.45% of violations, outperforming both networks,
for a small increase in inference time compared to the LSTM.
Given that most resource partitioning decisions take effect
after a few 100ms, the inference time for Seer is within the
window of opportunity the cluster manager has to take action.
More importantly it attributes the QoS violation to the correct
microservice, simplifying the cluster manager’s task. QoS
violations missed by Seer included four random load spikes,
and a network switch failure which caused high packet drops.

Incremental retraining: Training happens once from scratch,
and can be time consuming, taking several hours up to a day
for week-long traces collected on clusters with hundreds of
servers. However, one of the main advantages of microservices
is that they simplify frequent application updates, with old mi-
croservices often swapped out and replaced by newer modules,
or large services progressively broken down to microservices.
If the application (or underlying hardware) changes signifi-
cantly, Seer’s detection accuracy can be impacted. To adjust to
changes in the execution environment, Seer retrains incremen-
tally in the background, using zero padding and the transfer
learning-based approach in [31], which allows for weights
from previous training rounds to be stored in disk, resuming
training from where the model last left off.

o
o

6,

1] [P, BN 10ms @ 500ms
G __40/|HEE 50ms 3 1s
E12 S B 100msC— 2s
g 10 @30
= =)

e g

o c

é 6 E gZO

D 4 jol

€ o

E, 10
0 56.1 78.79 93.45 0

False Negatives False Positives
QoS Violation Detection Accuracy (%) 9

Figure 6: (a) Comparison of DNN architectures, (b) False neg-
atives and false positives as we vary the inference window.

4.4. Hardware Monitoring

Once a QoS violation is signaled and a culprit microservice
is pinpointed, Seer uses low-level monitoring to identify the
reason behind the QoS violation. In private clusters, we use
performance counters and utilization monitors to distinguish
between bottlenecked and non-bottlenecked resources. In pub-
lic clouds, where access to performance counters is limited, we
use a set of contentious microbenchmarks to identify resources
that impact the performance of an active microservice [13].
Upon identifying the problematic resource(s), Seer notifies the
cluster manager, which uses resource partitioning and isolation
to adjust the allocation of the problematic resource.

4.5. Implementation

Seer is implemented in 12KLOC of C,C++, and Python. It runs
on Linux and OSX and supports applications in various lan-
guages, including all frameworks the end-to-end services are
designed in. Furthermore, we provide automated patches for
the instrumentation probes for many popular microservices,
including NGINX, memcached, MongoDB, Xapian, and all Sock-
shop and Go-microservices applications. Seer is a centralized
system; we use master-slave mirroring to improve fault tol-
erance, with two hot fail-over masters. The trace database is
also replicated in the background.

5. Seer Evaluation

5.1. Methodology

Server clusters: First, we use a dedicated local cluster with
20, 2-socket 40-core servers with 128GB of RAM each. Each
server is connected to a 40Gbps ToR switch over 10Gbe NICs.
Second, we deploy the Social Network service to Google
Compute Engine (GCE) and Windows Azure clusters with
hundreds of servers to study the scalability of Seer.
Applications: We use all five end-to-end services of Table 1.
Services are driven by open-loop workload generators, with
the exception of the study in Section 6, where we examine a
large-scale deployment of the Social Network; in that case the
input load is driven by real user traffic.

5.2. Validation

False negatives & false positives: Fig. 6b shows the percent-
age of false negatives and false positives as we vary the pre-

38

diction window. When Seer tries to anticipate QoS violations
that will occur in the next 10-100ms both false positives and
false negatives are low, since Seer uses a very recent snapshot
of the cluster state to anticipate performance unpredictability.
However, given that applying corrective actions takes 10-100s
of milliseconds to take effect, such short windows do not al-
low enough time to avoid the QoS violation. At the other
end, predicting far into the future results in significant false
negatives, and especially false positives. This is because many
QoS violations are caused by very short, bursty events that do
not have an impact on queue lengths until a few milliseconds
before the violation occurs. Unless otherwise specified we use
a 100ms prediction window.

6. Large-Scale Cloud Study

6.1. Seer Scalability

We now deploy our Social Network service on a 112-server
dedicated cluster on Google Compute Engine (GCE), and use
it to service real user traffic. The application has 582 registered
users, with 165 daily active users, and has been deployed for
a two-month period. The cluster on average hosts 386 single-
concerned containers (one microservice per container), subject
to resource scaling actions based on Seer’s feedback.
Accuracy remains

high, consistent with 102 p—_———

the small-scale exper- 103 [Tstdve

iments. Inference 102 0 Brainwave
time, however, in- &£ 101

creases substantially g 10

from 11.4ms for the ~ 10°

20-server cluster to 107

54ms. Even though 10°

this is sufﬁci.ent for 107 Training Inference

many allocation de- Figure 7: Seer training and infer-

cisions, as the appli-
cation scales further,
Seer’s ability to find QoS violations early enough diminishes.

Over the past year multiple public cloud providers have
exposed hardware acceleration offerings for DNN training and
inference, either using a special-purpose design like the Tensor
Processing Unit (TPU) from Google [24], or using reconfig-
urable FPGAs, like Project Brainwave from Microsoft [11].
We offload Seer’s DNN logic to both systems, and quantify
the impact on training and inference time, and detection ac-
curacy . Fig. 7 shows this comparison for a 200GB training
dataset. Both the TPU and Project Brainwave dramatically
outperform our local implementation, by up to two orders of
magnitude. Between the two accelerators, the TPU is more
effective in training, consistent with its design objective [24],
while Project Brainwave achieves faster inference. For the

ence with hardware acceleration.

IBefore running on TPUs, we reimplemented our DNN in Tensorflow. We
similarly adjust the DNN to the currently-supported designs in Brainwave.

[\S]
al

220 &
g * 3 »
S A r oA
s 10 ® = * - &
Q 5 a® 7 A%
(@]
. _ Cal
0 10 20 30 40 50 60
Day

Figure 8: Number of QoS violations in Social Network, when
Seer is employed over a two month period.

remainder of the paper, we run Seer on TPUs, and host the
Social Network service on GCE.

6.2. Seer’s Long-Term Impact on Application Design

Seer has now been deployed in the Social Network cluster
for over two months, and during this time it has detected 536
upcoming QoS violations (90.6% accuracy) and avoided 495
(84%). Furthermore, by detecting recurring patterns that lead
to QoS violations, Seer has helped the application develop-
ers better understand bugs and design decisions that lead to
hotspots, such as microservices with a lot of back-and-forth
communication, or microservices forming cyclic dependen-
cies, or using blocking primitives. This has led to a decreasing
number of QoS violations over the two months (seen in Fig. 8),
as the application progressively improves. There are still some
spikes in QoS violations, coinciding with major redesigns of
the application, and in days 22, 23 there was a cluster outage,
resulting in zero reported violations. Systems like Seer can be
used not only to improve performance predictability, but also
to better understand the design challenges of microservices, as
more services transition to this application model.

7. Conclusions

Cloud services increasingly move away from complex mono-
lithic designs, and adopt the model of specialized, loosely-
coupled microservices. For such services traditional perfor-
mance debugging is insufficient, as dependencies between
microservices lead to backpressure effects and prolonged de-
graded performance. We presented Seer, a proactive, data-
driven performance debugging system that leverages practical
learning techniques, and the massive amount of tracing data
cloud systems collect to anticipate and avoid QoS violations.
We have validated Seer’s accuracy in controlled environments,
and evaluated its scalability on large-scale clusters on public
clouds. In all scenarios, Seer accurately detects upcoming
QoS violations, improving responsiveness and performance
predictability. As more services transition to the microservices
model, systems like Seer provide practical solutions to help
navigate the increasing complexity of the cloud.

References
[1]
[2]
[3]
[4]

Decomposing twitter: Adventures in service-oriented architecture.
http://tiny.cc/rg0ké6y.
Golang microservices example.
go—micro-services.
Sockshop: A microservices demo application. http://tiny.cc/
5cO0koy.

Zipkin. http://zipkin.io.

https://github.com/harlow/

39

ﬁ
=

[10]

[11]
[12]
[13

[14]

[15

[16

[17

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

] The evolution of microservices. http://tiny.cc/kalk6y, 2016.

Luiz Barroso and Urs Hoelzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. 2009.
Robert Bell, Yehuda Koren, and Chris Volinsky. The bellkor 2008
solution to the netflix prize. Technical report, 2007.

Adrian Caulfield, Eric Chung, and et al. A cloud-scale acceleration
architecture. In MICRO, 2016.

Tianshi Chen, Zidong Du, and et al. DianNao: a small-footprint high-
throughput accelerator for ubiquitous machine-learning. In Proc. of
ASPLOS, 2014.

Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and
Thomas F. Wenisch. The mystery machine: End-to-end performance
analysis of large-scale internet services. In Proceedings of OSDI, 2014.
Eric S. Chung, Jeremy Fowers, and et al. Serving dnns in real time at
datacenter scale with project brainwave. IEEE Micro, 38(2), 2018.
Jeffrey Dean and Luiz Andre Barroso. The tail at scale. In CACM, Vol.
56 No. 2.

Christina Delimitrou and Christos Kozyrakis. iBench: Quantifying
Interference for Datacenter Workloads. In IISWC. 2013.

Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-Aware
Scheduling for Heterogeneous Datacenters. In Proc. of ASPLOS. 2013.
Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In ASPLOS. 2014.
Christina Delimitrou and Christos Kozyrakis. HCloud: Resource-
Efficient Provisioning in Shared Cloud Systems. In Proceedings of
ASPLOS, April 2016.

Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. Tarcil:
Reconciling Scheduling Speed and Quality in Large Shared Clusters.
In Proceedings of SOCC, August 2015.

Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and
Ton Stoica. X-trace: A pervasive network tracing framework. In
Proceedings of NSDI, 2007.

Yu Gan and Christina Delimitrou. The Architectural Implications of
Cloud Microservices. In CAL, vol.17, iss. 2, Jul-Dec 2018.

Yu Gan, Meghna Pancholi, Dailun Cheng, Siyuan Hu, Yuan He, and
Christina Delimitrou. Seer: Leveraging Big Data to Navigate the
Complexity of Cloud Debugging. In Proc. of HotCloud, 2018.

Yu Gan, Yangi Zhang, and et al. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud
and Edge Systems. In Proceedings of ASPLOS, April 2019.

Yu Gan, Yanqi Zhang, Kelvin Hu, Yuan He, Meghna Pancholi, Dailun
Cheng, and Christina Delimitrou. Seer: Leveraging Big Data to Nav-
igate the Complexity of Performance Debugging in Cloud Microser-
vices. In Proceedings of ASPLOS, April 2019.

Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. Performance
monitoring and root cause analysis for cloud-hosted web applications.
In Proceedings of WWW, 2017.

Norman P. Jouppi, Cliff Young, Nishant Patil, and et al. In-datacenter
performance analysis of a tensor processing unit. In ISCA, 2017.
Harshad Kasture and Daniel Sanchez. Ubik: Efficient Cache Sharing
with Strict QoS for Latency-Critical Workloads. In ASPLOS, 2014.
David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. Heracles: Improving resource
efficiency at scale. In Proc. of ISCA. 2015.

Jason Mars and Lingjia Tang. Whare-map: heterogeneity in "homoge-
neous" warehouse-scale computers. In Proceedings of ISCA. 2013.
David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-
Dietrich Weber, and Thomas F. Wenisch. Power management of online
data-intensive services. In Proceedings of ISCA, pages 319-330, 2011.
Charles Reiss, Alexey Tumanov, Gregory Ganger, Randy Katz, and
Michael Kozych. Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In Proceedings of SOCC. 2012.

Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert
Hundt. Google-wide profiling: A continuous profiling infrastructure
for data centers. IEEE Micro, pages 65-79, 2010.

S. Sarwar, A. Ankit, and K. Roy. Incremental learning in deep
convolutional neural networks using partial network sharing. In
arXiv:1712.02719.

Benjamin H. Sigelman, Luiz André Barroso, and et al. Dapper, a large-
scale distributed systems tracing infrastructure. Tech report, 2010.
Lalith Suresh, Peter Bodik, Ishai Menache, Marco Canini, and Florin
Ciucu. Distributed resource management across process boundaries.
In Proceedings of SOCC. 2017.

Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin, Hui Zhang, and
Guofei Jiang. Cloudseer: Workflow monitoring of cloud infrastructures
via interleaved logs. In Proceedings of ASPLOS, 2016.

