

SAGE: PRACTICAL AND SCALABLE ML-DRIVEN PERFORMANCE DEBUGGING IN MICROSERVICES

Yu Gan¹, Mingyu Liang¹, Sundar Dev², David Lo², Christina Delimitrou¹

Cornell University, ²Google

EXECUTIVE SUMMARY

Motivation

- Microservices become increasingly popular in cloud systems
- Service-level objectives (SLOs) govern interactive microservices

Challenges in microservice performance debugging

• ML outperforms traditional heuristics

Sage: Root cause analysis system using unsupervised learning

- Use Causal Bayesian Networks for causal relationships among microservices
- Use counterfactuals to detect root causes (services and resources) of SLO violations

BACKGROUND: MICROSERVICES

Microservices

- Fine-grained, loosely-coupled, and single-concerned
- Communicate with RPCs or RESTful APIs
- SLOs: tail latency, availability, ...

Pros

- Agile development
- Better modularity & elasticity
- Testing and debugging in isolation

Cons

- Different hardware & software constraints
- Dependencies → complicate cluster management

Social Network

[1] Yu Gan et al. "An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud and Edge Systems", ASPLOS 2019

BACKGROUND: MICROSERVICES

NETFLIX

CHALLENGES OF MICROSERVICE PERF DEBUGGING

- Microservices are more sensitive to performance unpredictability^[1]
- Complex network dependencies^[1]
 - Hotspots can propagate
 - Difficulty in locating the root cause
- Complex tracing and monitoring
 - Requires end-to-end tracing and aggregation
 - Millions of timeseries over a long period of time
 - Complicates performance debugging, but makes data-driven methods possible

[1] Yu Gan et al. "An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud and Edge Systems", ASPLOS 2019

Previous Studies

Previous work

- CauseInfer^[1] [INFOCOM'14]
 Microscope^[2] [ICSOC'18]
 Detect root cause with PC-algorithm
- Seer^[3] [ASPLOS'19]: Proactive root cause detection system

Limitations:

- PC-algorithm: Poor scalability, prone to statistical errors
- Seer: Requires data labeling, high-precision time series & kernel-level tracing

[1] P. Chen, Y. Qi, P. Zheng, and D. Hou, "Causeinfer: Automatic and distributed performance diagnosis with hierarchical causality graph in large distributed systems," INFOCOM 2014

[2] J. Lin, P. Chen, and Z. Zheng, "Microscope: Pinpoint performance issues with causal graphs in micro-service environments," ICSOC 2019

[3] Y. Gan, Y. Zhang, K. Hu, Y. He, M. Pancholi, D. Cheng, and C. Delimitrou, "Seer: Leveraging Big Data to Navigate the Complexity of Performance Debugging in Cloud Microservices," ASPLOS 2019

DESIGN PRINCIPLES OF SAGE

- No need to label data
 - Challenge: correlation does not imply causation
 - Requires a causal model
- Robust to sampling frequency
 - Suitable for instrumentation in production
 - Not using temporal patterns for inference
- No need for kernel-level tracing
- Practical adjustment to service updates
- Focuses on resource provisioning-related performance issues

OVERVIEW OF TECHNIQUES

Approach:

CAUSAL BAYESIAN NETWORK MODELING

- Causal Bayesian Network (CBN)
 - A probabilistic graphical model where edges indicate causal relationships
- Reason for using CBN modeling
 - A tool for structural causal inference
 - Interpretable and explainable

Nodes in the CBN

- Service, node and network metrics (X nodes)
 - Service and node metrics: CPU, memory, disk
 - Network metrics
- RPC and network latency (Y nodes)
 - Client- & server-side latency, request and response network delay
- Latent variables (Z nodes)
 - Unobservable or immeasurable
 - Assumed multivariate Gaussian distribution

Α

В

CAUSAL INFERENCE WITH COUNTERFACTUALS

Counterfactual queries

- Queries of hypothetical end-to-end latency if some metrics had been "normal"
- Root causes: metrics that hypothetically solve the end-to-end performance issue

Generating counterfactuals with generative models

- Y Latency
- Z Latent variables

CONDITIONAL VARIATIONAL AUTOENCODER (CVAE)

- **Prior network:** Learn prior distribution $p_{\psi}(Z \mid X)$
- **Encoder:** Learn posterior distribution $q_{\theta}(Z \mid X, Y)$
- **Decoder:** Reconstruct input SLI data by $p_{\varphi}(Y \mid X, Z)$ with Z sampled from posterior distribution

• Loss function: $L_{CVAE} = -\mathbb{E}_{Z \sim q_{\theta}(Z|X,Y)} [\log p_{\varphi}(Y|X,Z)] + \beta \cdot D_{KL} [q_{\theta}(Z|X,Y) \parallel p_{\psi}(Z|X)]$

Prior network $p_{\psi}(Z \mid X)$

Encoder $q_{\theta}(Z \mid X, Y)$

Decoder $p_{\varphi}(Y \mid X, Z)$

GRAPHICAL VARIATIONAL AUTOENCODER (GVAE)

GVAE - factorizing CVAE according to the CBN model

- Factorization of the loss function: $L_{GVAE} = \sum L_{CVAE}$
- One encoder and prior network for each service & network channel
- One decoder for each RPC
- Decoder connections are determined by the information flow in the CBN

Benefits of using GVAE

- Connection pruning to enforce the network to follow the causal model
- Better interpretability
- Faster retraining upon microservice updates

ROOT CAUSE DETECTION WITH GVAE

- Learn the latent variables (Z) from the encoder
- Calculate "normal" values of metrics and latent variables
 - Median value among normal traces
- Two-level intervention for root cause detection
 - Locate culprit services
 - Locate culprit resource

INCREMENTAL & PARTIAL RETRAINING

- Microservices updated frequently
 - Services added, removed & updated
- Incremental & partial retraining
 - Only retrain upstreaming services affected by the updates

INCREMENTAL & PARTIAL RETRAINING

- Microservices updated frequently
 - Services added, removed & updated
- Incremental & partial retraining
 - Only retrain upstreaming services affected by the updates

INCREMENTAL & PARTIAL RETRAINING

- Microservices updated frequently
 - Services added, removed & updated
- Incremental & partial retraining
 - Only retrain upstreaming services affected by the updates

System Design

Monitoring

 Jaeger and Prometheus for collecting traces & performance metrics

Data collection

• Preprocessing, normalization

GVAE model

Implemented with PyTorch

Actuation

Scale up/out, CAT, network BW partitioning

Methodology

- Applications
 - » Synthetic Thrift chain and fanout services
 - » DeathstarBench^[1]
- Systems
 - » Local cluster: 2-socket 40-core servers with 128GB RAM and 2-socket 88-core servers with 188GB RAM each
 - » Google Compute Engine: 84 nodes with 4-64 cores, 4-64GB RAM and 20-128GB SSD
- Baselines and prior work
 - » Autoscaling and Offline Oracle
 - » CauseInfer^[2] and Microscope^[3]
 - » Seer^[4]
- [1] Y. Gan et al. "An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud and Edge Systems", ASPLOS 2019
- [2] P. Chen, Y. Qi, P. Zheng, and D. Hou, "Causeinfer: Automatic and distributed performance diagnosis with hierarchical causality graph in large distributed systems," INFOCOM 2014
- [3] J. Lin, P. Chen, and Z. Zheng, "Microscope: Pinpoint performance issues with causal graphs in micro-service environments," ICSOC 2019
- [4] Y. Gan, Y. Zhang, K. Hu, Y. He, M. Pancholi, D. Cheng, and C. Delimitrou, "Seer: Leveraging Big Data to Navigate the Complexity of Performance Debugging in Cloud Microservices," ASPLOS 2019

Accuracy of detecting root cause

- Sage has 88%-95% accuracy across five applications
- CauseInfer and Microscope have low accuracy due to errors in finding causal relationships with PC-algorithm
- Seer has similar accuracy, but Sage needs less information

Actuation

- Sage resolves SLO violations fast
- Because of false negatives, other methods cannot always resolve the issue

Incremental & partial retraining

- Less accuracy drop & faster convergence
- Incremental retraining: reusing neural network parameters
- Partial retraining: updating subset of neurons

A: One service added at frontend

B: One service updated

C: One service removed

D: One service added at backend

E: Multiple services added, updated, and removed

F: More services added, updated, and removed

Scalability on GCE

- 84 nodes with 4-64 cores, 4-64GB RAM and 20-128GB SSD
- 6.7x more containers
- Comparable accuracy with local runs
- 19.4% increase in training time and 26.5% increase in inference time
 - » Collecting distributional data across replicas

CONCLUSIONS

- Performance debugging for microservice is challenging
- Sage: Root cause detection system based on unsupervised learning
 - Causal Bayesian network for modeling causal relationships
 - Counterfactual queries for root cause detection
- Evaluation with representative microservices
 - Accurate detection and fast actuation
 - Fast convergence upon service updates
 - Scales well to large clusters on GCE
- Future work
 - More types of issues: design bugs, security issues, ...

Thank you!

Questions are welcome at Session 4 Q&A Panel

@ 4:45 – 5:00 PM PDT, April 19th, 2021